
University of Toronto
APS105H1F — Computer Fundamentals

Lab 0: UNIX Basics

Introduction
This first lab session will serve as your introduction to the computers we’ll be using in this course.
They are running a variation of UNIX called Linux, specifically the version compiled by Red Hat.
UNIX is significantly different from the Windows or Macintosh environment that you may have used
previously.

This assignment is in the form of a tutorial that will gradually take you through the basics of
interacting with the computer. You may find that this assignment will take longer than two hours
to complete. If this is the case, please complete it at another time, but as soon as possible. This lab
will not be marked

After you complete this assignment, you are encouraged to continue your introduction to the
laboratory computing environment by reading the manual Getting Started With UNIX. It can be
found online at

http://www.ecf.utoronto.ca/ecf/docs/unix

Logging into the Computer System

The first thing you must do when you begin your work on the computer is to “log in” to let the
system know that it is you who is using the system. Access to the system is controlled to maintain
its security; only those with accounts on the Engineering Computing Facility (ECF) system can
access it. To login, you must have two pieces of information: a login name and a password. All
undergraduate electrical and computer engineering students are automatically given an account
when they register. If you do not already have a login name and password, you will be told how to
obtain them in the next section.

Your login name (or “login”) is a six to eight character string that is your identity on the
computer network. Your password is a variable length character string that should be known only
to you. Your password serves as a key to your account much as you would use a key to gain entry
to your locked house. In fact, not even the system knows your password; it only keeps an encrypted
version. Later in the lab you will be shown how to change your password.

Never give your password to someone else or let someone use your account. Doing so is against
University policy and the other user can leave open a “back door” into your account to access it
later, even if you change your password.

Just as you login to the computer when you begin to use it, you must logout of the computer
when you are finished using it. If you must logout before you reach the end of the assignment, read
the final section of the assignment which instructs you on how to logout. After you logout, DO NOT
TURN THE COMPUTERS OFF!

Getting Your Login Name

This is how you get your account name if you have never logged in before. If this doesn’t work for
you, go to the ECF office. It is located in the Engineering Annex, in Room EA206.

1. At any ECF terminal in SF1012 or SF1013, you should see a screen with a window that asks
for a username (see p1 of lab1Screens.pdf). In the Username field, type getname (all lower
case).

1



2. You will then be presented with a window that will ask you to enter your 10-digit student
number, your last name, and your date of birth (see p2 of lab1Screens.pdf).

3. Shown below is an example of what you will see on the screen. The text you enter should
replace the student data shown here with your actual student number, name, and birth date.
In this example, the initial password would be 43210108. You’ll learn how to change it later
on in this lab.

Please enter your student number: 0978654321

Please enter your last name: Smith

Please enter your date of birth as YYMMDD: 990108

Your ECF login name is: smithjo

4. If the information entered is correct and you are registered, the program will display your ECF
userid and ECFPC userid. You will use the ECF userid for this course.

5. Your initial password will be eight digits long. It will consist of the last four digits of your
student number followed by the month and day of your birth in the form MMDD.

The X Window Environment

After logging in, you will be presented with a sequence of windows. After reading each one, click on
the okay button in the lower left corner of the window to make it go away (or just wait and it will
eventually disappear on its own). Linux will then start up the X Window computing environment.
You will see as you progress in this course that the X Window environment of the UNIX operating
system is a powerful one to work in because of its ability to have the computer work on a number of
different things at once, a concept known as multitasking. You can even run programs on different
computers and have their windows appear on your screen. The X Window environment also allows
you to conveniently organize the windows on the screen. For now, we will learn the basics about
manipulating windows.

When the X Window system starts up, there will be a taskbar along the bottom of the screen
(see p3 of lab1Screens.pdf). There may also be windows on the screen or you may have to create
them yourself. When you log out, the desktop is saved so that the windows and their positions are
saved for your next login session.

Most of your work will be done using terminal windows. Start a new terminal window by
right-clicking some unoccupied portion of the screen, and select New Terminal from the menu that
pops up.1 A terminal window will pop up. The window can be moved around on the screen with
the mouse by by clicking and holding the left mouse button over the title bar (along the top of the
window) and dragging it to another location. Give this a try.

You can also change the size of a window using the mouse. Move the cursor to the lower right
corner of the window. You should see the cursor change to an L-shape that aligns with the corner
of the window. To make the window bigger, press the mouse button, drag the cursor away from the
window, and then release the mouse button.

At the top right of the window are three little boxes to control the window. The × closes the
window, the middle one maximizes the window size, and the left one makes it makes it shrink to an
icon on the taskbar. To make the window reappear, click on its name in the task bar.

In the terminal window, you should see some introductory messages about the system followed
by the UNIX prompt which may vary but will usually end with the character $. We will show the
prompt simply as $. You can issue commands directly to the UNIX operating system at this prompt.
The first command you will enter will tell UNIX to create a new window. Move the pointer with

1You can create an icon in your task bar for this very useful terminal window by right clicking the empty middle
part of the task bar (called the pane), and navigating through the menus as follows: Add to Panel → Launcher

From Menu → System Tools → terminal — this process is shown on p5 of lab1Screens.pdf.

2



the mouse so that it is on top of the Login Session window and enter the following command:

$ xterm &

The xterm command stands for X Terminal and it creates a window that, like the GNOME
terminal window, has a UNIX prompt at which you can enter commands. You can now use either
the GNOME terminal window or the new xterm window to issue UNIX commands. You can create
additional windows with the xterm & command if you like and have several windows on the screen.
Despite having many windows on the screen, only one window is active at a time. The active window
has a highlighted border, and all text typed at the keyboard is directed to the active window. You
can make another window active by clicking the title bar, the same way Microsoft Windows works.
More advanced UNIX users change their settings so having the mouse pointer over a window is
sufficient to make it active. To change your setup to this method, you will have to change the focus
behaviour of your desktop and window manager.

When you create new windows with the xterm command, the ampersand (&) is an optional
component of the command. By default, commands are executed in the foreground. Adding an
ampersand to the end of a command instructs UNIX to execute it in the background. Commands
that are executed in the foreground must complete execution before the command line that started
it can do anything else. So if you call up a new window using the xterm command and do not
include an ampersand, you will not be able to use the window from which you called up the new
one until the new xterm window is closed. When a command is executed in the background, the
command line from which it was called can continue to accept commands while the background
command is executing. When calling up new windows from the command line, you should always
add an ampersand at the end of the command so that you can use both the new and the original
windows.

Changing Your Password

At this point an important task that you should perform is to change your password. Remember
that the password to your account is the only security measure keeping your account private so you
should choose your password carefully and keep it an absolute secret. You change the password by
using the passwd command. Your password should be at least 6 characters long, with 7 or 8 being
preferable. Try to use a mixture of numbers and letters in both upper and lower case, making it
less likely that someone will be able to guess your password. In particular, do not use any names or
single words that could be found in a dictionary. Since computers are good at tedious tasks, people
have written programs that can try to guess your password using a dictionary and other guessing
schemes. A good way to create a password is to take a sentence that is easy to remember and use the
first letter (or a numeral) of each word. For example, the sentence “I hate to be late for computer
cla ss” could be used to produce the password Ih2bl4cc.

When changing your password, a new window on skule.ecf, the main server, may start up. The
new password dialog should look something like this:

$ passwd

opening window on skule for password change

Changing password for <your login name>

Old password: <type in your current (old) password here>
New password: <type in your new password here>
Re-enter new password: <type in your new password again>

As you type both the old and new passwords, the characters will not be visible on the screen.
This is deliberate, to prevent others from seeing your password by looking over your shoulder.
Because you cannot see your password, you are asked to type it twice, on the theory that you are
unlikely to make the same typing mistake twice.

3



File Organization

Data and programs that you use are stored as files on a disk. There are many types of files: some
are software programs that can be executed, other files contain text that can be read, while other
files contain images that can be displayed on the screen. Two things that all files have in common
are that they can be stored, and that they all have a name. We will soon take a look at some files
on the ECF computer system.

As we add more files to computer storage the number of files grows to the point where it is
hard to keep track of them all. For this purpose, files are organized into directories. You can think
of directories as being like file folders. File folders are used to organize papers, articles, and other
things and are named according to their contents. You may well be familiar with the concept of
folders from Windows or Macintosh systems. In UNIX, folders are called directories.

If you mapped out the directory and file organization onto a graphical representation, you would
get a tree-like structure as shown in the diagram. At the top is the root directory. It is represented
by a slash character, which is its name. The root directory may contain files, and it will also contain
other directories. The files and directories within the root directory are shown as nodes below and
attached to the root directory. These directories may have files and other directories contained
within them and these are shown as nodes below and attached to the parent directory. This pattern
can be repeated many times.

hello.c

doej fairgrieve cartermaclean finkle

1T0 prof

spool bin u

/

UNIX file organization

It is the files that are actually important when it comes to running programs, whereas the
directories are only there to organize the files. When you want to work with files, you generally have
immediate access to the files in one directory only. This directory is called the working directory.
To find out what the present working directory is, type in the following command:

$ pwd

UNIX will respond with a string that looks like /u/1T0/yourLogin. This string describes a path
through the directory tree from the root directory to the present working directory. Reading it from
left to right, the path starts at the root directory, which contains the directory named u, which
contains the directory 1T0, which contains the directory with the same name as your login. What
this string is saying is that there is a directory with the same name as your login name and it is
located in the path described above and it is the present working directory.

You can change the present working directory using the cd command. The cd command takes
an argument, which is an extra term that is input after the command. In this case the argument is
the path of the directory to which you want to move. There has to be a space between the command
and the argument. Try the following:

4



$ cd /

Then enter the pwd command. You will see that the present working directory is as you have re-
quested — the root directory. Now try the following:

$ cd /u

Entering the pwd command will show that you are now in the directory requested. Finally, enter:

$ cd /u/1T0/yourLogin

and this will take you back to your home directory as you can verify using the pwd command once
again.

Up until now, we have been specifying the path from the root directory to the desired directory
as the argument to the cd command. This is called the absolute path. It is not necessary to always
give the absolute path as the argument and usually one does not do so. Rather, one can use what
is known as a relative path.

To see how relative paths work, start by going to the root directory by entering cd /. Now go
to the u directory by entering the following command:

$ cd u

If you do a pwd command, you will see that you are now in /u even though you didn’t have the
slash beginning the argument of the cd command. Because the argument did not begin with a slash,
UNIX understood you to mean go to the u directory from the present working directory, which is /.
Now try to go to the 1T0 directory by entering:

$ cd 1T0

Again, if you enter the pwd command you will see how you have moved into the new directory.
There are two important short forms that are used to specify directories. Two consecutive

periods (..) refers to the parent directory of the current directory, so if you use the command cd ..

the parent directory will become the working directory. The other important short form is the ∼

character, which refers to your home directory. No matter where you are in the directory tree,
entering cd ∼ will make your home directory the working directory. With the cd command, you
can get even simpler than that and enter just cd to make your home directory the working directory.

Practice using these short forms. First, enter a command to go directly to your home directory
(cd ∼ or cd), then back up the directory tree, one directory at a time, using the cd .. command.
Then return to your home directory once again.

Now you should have a good understanding of navigating around directories. But of course, the
interesting part is not directories, but what they contain. To determine what a directory contains,
one uses the ls command, which stands for “list” and instructs UNIX to list the contents of the
present working directory, which will include any files and subdirectories. Now let’s see what we can
find using the ls command. Go to the root directory and enter:

$ ls

You will see some strings arranged in columns. The ls command is displaying the names of files
and subdirectories contained in the root directory. Try using ls in the /u directory and in other
directories if you wish.

Now go to your home directory and enter ls. There is probably no output. This is because as
a new user, you have not created any new files or directories. However, even though ls does not
show you any files in your home directory, there are some there that are hidden. To show all the

5



files, including those that are hidden, enter:

$ ls -a

Some filenames will be displayed. The names of hidden files are easily distinguishable as they
all begin with a period. When your account was created, your home directory and a few hidden files
were automatically created for you. These files are hidden because you would not normally work
with them as you would with your program files. Hidden files usually contain special information for
the computer system on various things such as how to set up your screen display or how to respond
to your commands. You may want to explore some of these files and determine what they do some
other time.

One last variation on the ls command that you will probably find helpful is:

$ ls -al

The final l stands for long form and entering this command will show all files and directories with
more descriptive information for each item. A concise summary of directory and file organization
can be found in the Getting Started With UNIX manual.

Manipulating Directories and Files

In the previous section, it was shown how to explore the directory tree and how to look at existing
directory contents. Now you will learn the basic commands for changing directory and file organi-
zation. For the most part, this will be constrained to directories and files within your own home
directory.

Changing the directory tree structure is accomplished through the use of two basic commands:
one that creates new directories, and one that destroys them. The mkdir command makes a new
directory. To illustrate its use, go to your home directory and create a new directory there by entering

$ cd ∼

$ mkdir aps105

The argument supplied with this command is the name of the new directory, aps105. You can
verify that a new directory was made by using the ls command. Notice that, by default, the new
directory is placed within the present working directory.

Removing directories that are no longer required is just as easy. To do so, you go to the direc-
tory in which the unwanted directory is contained, then use the command:

$ rmdir <directoryName>

Note that a directory cannot be removed unless it contains no other files and no other directories.
Basic file manipulation is achieved through the commands that copy, move and delete files. The

cp (copy) command is used to make a duplicate of an existing file. It takes two arguments: the
first argument is the name of the file to be copied, the second argument is the new name of the new
duplicate file. In your home directory, enter the following command:

$ cp .login new.file

This command has made a copy of the hidden file .login and called it new.file which is not a
hidden file because its name does not begin with a period. Verify that the copy was made using the
ls command.

The mv (move) command changes the name of a file, and can also move a file into a different
directory (an idea that will be discussed shortly). Try the following:

6



$ mv new.file newname.file

Again, the ls command will show you the change that was made.
Finally, files can be deleted by using the rm (remove) command. Delete the new file that you

created with the following:

$ rm newname.file

Up until now, the file and directory manipulation commands have been demonstrated to operate
only within the present working directory. These commands are in fact more versatile than this
because it is possible to work with files and directories other than those in the present working
directory. To work with a file or directory outside of the present working directory, you must supply
its path rather than just its name for the command argument. Absolute or relative paths can be
used.

For example, cp can be used to make a duplicate of a file that is not within the present working
directory. Use the following command to copy the C++ program hello.c which is located in the
directory /share/copy/aps105 to your home directory:

$ cp /share/copy/aps105/hello.c .

The first argument of the cp command is the source file; here it contains the absolute path of
the hello.c program file. The second argument is a single period, a commonly used short form that
represents the present working directory. UNIX interprets this command to mean place a copy of the
file hello.c (located in /share/copy/aps105) in the current directory and give it the same name:
hello.c. Now try using the mv command to place this file in the aps105 directory you created earlier:

$ mv hello.c aps105/hello.c

The mkdir, rmdir, and rm commands also can take paths as arguments. Experiment with these
commands some more until you get the hang of it. Use the UNIX manual as a reference.

Creating, Compiling and Running a C++ Program

There two approaches to creating, compiling and running the C++ programs that you will write for
this course: Either you can use a separate tool to perform each of these actions – a text editor to
create the program file, a compile command to compile it, and another command to run it; Or, you
can use an Integrated Development Environment (called IDE), which allows you to perform many
tasks from a single, usually graphical program interface. In this course we will only use the first
approach.

Text Editing

The most basic and most important files that you will be working with are text files. A text file
consists of readable text that can be created using the keys on a standard keyboard. Text files are
used for various purposes so you will want to have a good knowledge of how to work with them. In
this course, you will be making text files that will serve as C++ programs.

You can create or make changes to a text file using what is called a text editor. There are several
text editing programs available for use on the computer network. One of the simplest is called nedit,
and it is described below. The editor you should learn to use for your assignments is called nedit,
and you should try using it fairly soon. Call up nedit on your computer using the command:

$ nedit &

7



The nedit window that pops up differs slightly from the xterm windows we have been using.
This window is specifically designed for editing text files. There are two areas we need to understand
in this window to this window. Along the top of the window is a menubar with categories of actions
that may be performed. The bottom section is a large empty box and it is here where the text file
is composed. nedit starts up with this section cleared so you can create a file from scratch. Let’s
create a simple text file. Move the mouse so that the cursor is pointing in this section. Then write
some simple text in this box such as your name or “testing testing 1 2 3 . . . ”

Now lets save our file. Because this is a new file, it has yet to be named. To save our new file
select File → SaveAs from the Menubar. Another pop-up box will be displayed which allows us to
identify the new filename and where (in which directory) we wish to store this file. Point the cursor
inside the box labelled Save File As and append test.txt to the path which is displayed, then click
on the OK button. You have just created a new text file. Select File → Exit from the Menubar to
close the nedit window.

To see that a new text file was created, go to the xterm window and enter an ls command. The
file test.txt should appear in the directory listing.

Open up an nedit window again using the command written above. Besides creating new files,
nedit can be used to change existing files. To open an existing file, File → Open from the Menubar.
Another pop-up box displays our directory and file listing. Select the file we have just created by
double-clicking on test.txt. The file you created is loaded into the text file section. You can
now edit the file. Point with the mouse just after the first testing word and click. Now press
the backspace key on the keyboard several times until the word is erased. Now, type in the word
Editing. Notice that (modified) has been added to the window label next to the name of your file.
This tells you that you have made changes to the file, but have not saved them. To save this file
(which has already been named), select File → Save from the Menubar and your changes will be
saved. Finally, select File → Exit from the Menubar to exit the editor.

If you explore the nedit menubar, you will discover features that will probably help you with
future programming exercises. Search allows you to look for words, or replace them in your text.
Preferences will allow you to highlight the structure (syntax) of your C++ programs and show
your line numbers (useful for finding problems). Shell will allow you to execute commands to
compile your C++ programs without exiting the editor – your compilation errors will be displayed
in nedit so that you can make immediate corrections. The Shell options may be too difficult for
you at first, but as your Unix comfort-level increases, you may want to experiment with this.

Other editors you may want to try out are pico, which is also for beginners, and vi or emacs
which are for more advanced users.

Editors are useful for creating and editing text files, but if you just want to read the contents
of a text file, you can use one of several UNIX commands at an xterm window. This saves you from
having to start up a text editor to view the file. The most convenient command for typing out a
text file is the more command, but most UNIX systems have a better version of more, called less.
Entering more (or less) along with the text file name as an argument types out the file in the xterm
window, (one screen at a time, if the file is longer than one screen). You can advance through the
file by pressing the space bar. Try using the more command as follows:

$ more test.txt

Compiling and Running a C++ Program

Now try to compile the hello.c program. From a terminal window, go to the aps105 directory and
start the C++ compiler by typing:

$ g++ hello.c

This will create a file named a.out in the aps105 directory. This file contains the machine code that
will perform the desired results when run on the computer used to compile it. You run this program
as follows:

8



$ ./a.out

You should see the output of the program, saying Hello, world!. If you prefer for your program
to have a more interesting name than a.out, try

$ g++ hello.c -o hello

which directs the compiler to place the output in the file named hello, which can be run with the
command

$ ./hello

What happens if you instead try to run your program with the following command?

$ hello

Transferring Files Between Computers: scp

When logged in to a computer on the ECF system you are using what is known as a distributed file
system. This simply means that your files are visible to any ECF machine you happen to be logged
in to, be it p42.ecf or skule.ecf. As long as you do all your work on ECF machines, you need not
worry about having to transfer files.
However, for APS105, many of you may elect to work at home (or elsewhere), and will have to
transfer your files to ECF so that they can be submitted for marking. To do this, you can use a
utility named scp, which is a secure version of cp, and behaves in a very similar manner. To practice
using scp, we will copy a file from whichever machine you are currently logged in to to p1.ecf. Try
typing

$ scp hello.c yourLogin@p1.ecf.toronto.edu:hello2.c

where yourLogin should be replaced with whatever your login name is. You will be prompted for
your password. You may also be given a warning the first time you transfer a file to a new machine,
that looks like this:

The authenticity of host ’p48.ecf (128.100.8.98)’ can’t be established.

RSA key fingerprint is 62:b8:e7:02:67:5c:1e:3b:de:e0:cd:cf:37:7d:7f:d7.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ’p48.ecf,128.100.8.98’ (RSA) to the list of known hos

ts.

It’s OK (for this lab at least) to answer ’yes’.
Since we were copying the file to the same file system, this command has been demonstrated in a
way that copies the file to a new name. Typing ls -l will show the new copy. If you wanted to
copy the file to a machine on another system, say seth.eecg, without changing its name, you would
type

scp hello.c yourLogin@seth.eecg.utoronto.ca:

If you wanted to copy a file from that remote system,2 you could type

2In the following examples, the name seth.eecg.utoronto.edu is a real machine, but since you (almost certainly)
do not have your own account on this machine, you cannot expect these examples to work if you try them.

9



scp yourLogin@seth.eecg.utoronto.ca:someFile.c .

The main difference between scp and cp is the addition of the construct username@system: at the
beginning of the name of either the file being copied or the location the file is being copied to. The
‘:’ character is important, as it tells scp where the pathname begins. When the first character after
the ‘:’ is not /, scp assumes that apathname relative to the login name’s home directory is being
used. So, for example, the command

scp someFile maclean@p2.ecf:aps105/

copies the file someFile from the present working directory on the machine you are currently logged
in to, to the aps105 subdirectory of the home directory of user maclean on p2.ecf. The command

scp someFile maclean@p2.ecf:/tmp/

would transfer the file to the /tmp directory on p2.ecf—this is an example of using an absolute
pathname.
In order to transfer files from a PC running windows, you will need to download a Windows version
of scp. If you use GoogleTMto search for WinSCP or PuTTY you will find free programs for Windows
that transfer files to and from your PC. In particular, the PuTTY download page has a utility pscp

which behaves the same as scp. Note that these programs will not allow you to transfer files to and
from your PC if you are located in the lab and not in front of your PC: this is beyond the scope of
this lab.

Electronic Mail

UNIX has a very primitive mailing tool that is invoked using the mail command. To send mail
using this facility, use the following steps:

1. Enter the command:
$ mail <yourFriend’sEmailAddress>

If their account is also on the ECF system, you can drop the @ecf.utoronto.ca part of their
address.

2. The mail command will prompt you for the subject of the message. Type in a short description
of the subject and then hit RETURN.

3. Type in the message.

4. After finishing the message, hit RETURN. Type in a single period and hit RETURN again
and the letter will be sent.

If at any time while you are composing the letter you decide to cancel it, enter CTRL-c twice;
that is, hold down the CONTROL or CTRL key (as you would the shift key) while typing in a c.

If someone has sent mail to you, UNIX will notify you with the message You have new mail

when you login. To read new mail, enter the command:

$ mail

The UNIX mail facility will display a list of the messages waiting to be read. For each message in
the list, the sender’s login and the subject will be displayed. To read the messages all you need to
use is the Enter key and the space bar. Press Enter to display the first letter in the list. If it can’t
completely fit on the screen, you will see only one screenful and a more prompt; the space bar will
show you the next screenful. When that letter is completed, you can press Enter again to read the
next one. This is the most basic way to use e-mail, but more control over the program is possible.
For more information, see the UNIX manual. There are better mailing alternatives that may take

10



a little bit of learning. Try the pine mailer. You can learn about this mailer using the man pine

command and also asking the program itself for help, using its internal help commands.
If you wish to have mail that is sent to your ECF account forwarded to you at another address,

you can create a file called .forward whose contents are simply the address (or addresses) to which
you want mail forwarded.

Important: You are required to read e-mail sent to you at your ecf e-mail address, as it may
contain important course information (e.g., your assignment marks for this course). We are not
responsible for e-mail that goes missing if you forward to another e-mail address.

Browsing the World Wide Web

You should be able to use the FireFox button (the icon depicting planet earth encircled by a mouse
and its cord) on the taskbar to start FireFox, a Netscape-like browser. If not, you can start FireFox
by typing, in a window:

$ firefox &

After a delay, you may see a window asking you if you will accept various terms and conditions.
Read it and then click the OK box if you wish to proceed. You should note that there may be
different versions of Netscape on the system.

From Netscape, you can gain access to the course website:
http://courses.ece.utoronto.ca/20069/aps105h1f/

You may also find it worthwhile to check out the Engineering Computing Facility site:
http://www.ecf.utoronto.ca/

which has all sorts of information about ECF facilities.

Setting Up Your Own Web Space

You can begin creating your own web space on ECF right away. At the UNIX prompt on skule, type:

$ cd ~

$ wwwinit

A series of instructions will appear on the screen telling you that the space was created. You can
visit your home page using Netscape by replacing login with your login id:

http://www.ecf.utoronto.ca/˜yourLogin/

Logging Out

To log out, click on the GNOME footprint button on the taskbar. This will produce a pop-up menu
with a number of options. Click on Log out. Then confirm Really log out? by clicking Yes.

Never forget to log off when you’re done! If you do not log out, someone will be able to get
unauthorized access to your programs and other files after you leave the terminal. They may even
leave “back doors” open to regain access to your account after your password is changed. They
could get you in BIG trouble, so always ask a sysadmin for help if you think your account is no
longer secure.

11




