
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as
supplied by Addison Wesley

APS105: Lecture 11

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

4.3

Programmer-Defined Functions

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 3

;

Programmer-Defined Functions

 Two components of a function definition
 Function declaration (or function prototype)

 Shows how the function is called
 Must appear in the code before the function can be called
 Syntax:

Type_returned Function_Name(Parameter_List);
//Comment describing what function does

 Function definition
 Describes how the function does its task
 Can appear before or after the function is called
 Syntax:

Type_returned Function_Name(Parameter_List)
{

//code to make the function work
}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 4

Function Declaration

 Tells the return type
 Tells the name of the function
 Tells how many arguments are needed
 Tells the types of the arguments
 Tells the formal parameter names

 Formal parameters are like placeholders for the actual
arguments used when the function is called

 Formal parameter names can be any valid identifier
 Example:

double total_cost(int number_par, double price_par);
// Compute total cost including 5% sales tax on
// number_par items at cost of price_par each

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 5

function header

function body

Function Definition

 Provides the same information as the declaration
 Describes how the function does its task

 Example:

double total_cost(int number_par, double price_par)
{

const double TAX_RATE = 0.05; //5% tax
double subtotal;
subtotal = price_par * number_par;
return (subtotal + subtotal * TAX_RATE);

}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 6

The Return Statement

 Ends the function call
 Returns the value calculated by the function
 Syntax:

return expression;
 expression performs the calculation

or
 expression is a variable containing the

calculated value
 Example:

return subtotal + subtotal * TAX_RATE;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 7

Display 4.3

The Function Call

 Tells the name of the function to use
 Lists the arguments
 Is used in a statement where the returned value

makes sense
 Example:

double bill = total_cost(number, price);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

4.1

Top-Down Design

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 9

Top Down Design

 To write a program
 Develop the algorithm that the program will use
 Translate the algorithm into the programming

language

 Top Down Design
(also called stepwise refinement)
 Break the algorithm into subtasks
 Break each subtask into smaller subtasks
 Eventually the smaller subtasks are trivial to

implement in the programming language

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 10

Benefits of Top Down Design

 Subtasks, or functions in C++, make programs
 Easier to understand
 Easier to change
 Easier to write
 Easier to test
 Easier to debug
 Easier for teams to develop

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 11

Type Casting

 Recall the problem with integer division:
int total_candy = 9, number_of_people = 4;
double candy_per_person;
candy_per_person = total_candy / number_of_people;
 candy_per_person = 2, not 2.25!

 A Type Cast produces a value of one type
from another type
 static_cast<double>(total_candy) produces a double

representing the integer value of total_candy

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 12

Integer division occurs before type cast

Type Cast Example

 int total_candy = 9, number_of_people = 4;
double candy_per_person;
candy_per_person = static_cast<double>(total_candy)

/ number_of_people;
 candy_per_person now is 2.25!
 This would also work:

candy_per_person = total_candy /
static_cast<double>(number_of_people);

 This would not!
candy_per_person = static_cast<double>(total_candy /

number_of_people);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 13

Old Style Type Cast

 C++ is an evolving language
 This older method of type casting may be

discontinued in future versions of C++

candy_per_person =
double(total_candy)/number_of_people;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 14

Section 4.2 Conclusion

 Can you
 Determine the value of d?

double d = 11 / 2;

 Determine the value of
pow(2,3) fabs(-3.5) sqrt(pow(3,2))
7 / abs(-2) ceil(5.8) floor(5.8)

 Convert the following to C++

yx + xy 7+

a
acbb

2
42 −+−

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

4.3

Programmer-Defined Functions

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 16

;

Programmer-Defined Functions

 Two components of a function definition
 Function declaration (or function prototype)

 Shows how the function is called
 Must appear in the code before the function can be called
 Syntax:

Type_returned Function_Name(Parameter_List);
//Comment describing what function does

 Function definition
 Describes how the function does its task
 Can appear before or after the function is called
 Syntax:

Type_returned Function_Name(Parameter_List)
{

//code to make the function work
}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 17

Function Declaration

 Tells the return type
 Tells the name of the function
 Tells how many arguments are needed
 Tells the types of the arguments
 Tells the formal parameter names

 Formal parameters are like placeholders for the actual
arguments used when the function is called

 Formal parameter names can be any valid identifier
 Example:

double total_cost(int number_par, double price_par);
// Compute total cost including 5% sales tax on
// number_par items at cost of price_par each

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 18

function header

function body

Function Definition

 Provides the same information as the declaration
 Describes how the function does its task

 Example:

double total_cost(int number_par, double price_par)
{

const double TAX_RATE = 0.05; //5% tax
double subtotal;
subtotal = price_par * number_par;
return (subtotal + subtotal * TAX_RATE);

}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 19

The Return Statement

 Ends the function call
 Returns the value calculated by the function
 Syntax:

return expression;
 expression performs the calculation

or
 expression is a variable containing the

calculated value
 Example:

return subtotal + subtotal * TAX_RATE;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 20

Display 4.3

The Function Call

 Tells the name of the function to use
 Lists the arguments
 Is used in a statement where the returned value

makes sense
 Example:

double bill = total_cost(number, price);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 21

Display 4.4 (1)

Display 4.4 (2)

Function Call Details

 The values of the arguments are plugged into
the formal parameters (Call-by-value mechanism
with call-by-value parameters)
 The first argument is used for the first formal

parameter, the second argument for the second
formal parameter, and so forth.

 The value plugged into the formal parameter is used
in all instances of the formal parameter in the
function body

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

4.5

Local Variables

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 23

 Variables declared in a function:
 Are local to that function, they cannot be used

from outside the function
 Have the function as their scope

 Variables declared in the main part of a
program:
 Are local to the main part of the program, they

cannot be used from outside the main part
 Have the main part as their scope

Display 4.11 (1)
Display 4.11 (2)

Local Variables

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 24

 Global Named Constant
 Available to more than one function as well as the

main part of the program
 Declared outside any function body
 Declared outside the main function body
 Declared before any function that uses it

 Example: const double PI = 3.14159;
double volume(double);
int main()
{…}

 PI is available to the main function
and to function volume

Display 4.12 (1)
Display 4.12 (2)

Global Constants

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 25

Global Variables

 Global Variable -- rarely used when more
than one function must use a common
variable
 Declared just like a global constant except

const is not used
 Generally make programs more difficult to

understand and maintain

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 26

 Formal Parameters are actually variables that are
local to the function definition
 They are used just as if they were declared in the

function body
 Do NOT re-declare the formal parameters in the

function body, they are declared in the function
declaration

 The call-by-value mechanism
 When a function is called the formal parameters

are initialized to the values of the
arguments in the function call Display 4.13 (1)

Display 4.13 (2)

Formal Parameters
are Local Variables

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 27

Chapter 4 -- End

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 28

Back Next

Display 4.3 (1/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 29

Back Next
Display 4.3
(2/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 30

Back Next

Display 4.4 (1/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 31

Back Next
Display 4.4
(2/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 32

Back Next

Display 4.5 (1/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 33

Back Next
Display 4.5
(2/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 34

Back NextDisplay 4.6

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 35

Back NextDisplay 4.7

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 36

NextBackDisplay 4.8

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 37

Back Next
Display 4.9
(1/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 38

Back Next
Display 4.9
(2/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 39

Back Next
Display 4.9
(3/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 40

Back Next

Display 4.10 (1/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 41

Back Next

Display 4.10 (2/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 42

NextBack

Display 4.11 (1/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 43

Back Next
Display 4.11
(2/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 44

Back Next

Display 4.12 (1/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 45

Back Next
Display 4.12
(2/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 46

Back Next

Display 4.13 (1/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 47

Back Next
Display 4.13
(2/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 4- 48

Back Next

Display 4.14 (1/2)

	APS105: Lecture 11
	4.3
	Programmer-Defined Functions
	Function Declaration
	Function Definition
	The Return Statement
	The Function Call
	4.1
	Top Down Design
	Benefits of Top Down Design
	Type Casting
	Type Cast Example
	Old Style Type Cast
	Section 4.2 Conclusion
	4.3
	Programmer-Defined Functions
	Function Declaration
	Function Definition
	The Return Statement
	The Function Call
	Function Call Details
	4.5
	Local Variables
	Global Constants
	Global Variables
	Formal Parameters�are Local Variables
	Chapter 4 -- End
	Display 4.3 (1/2)�
	Display 4.3�(2/2)
	Display 4.4 (1/2)�
	Display 4.4�(2/2)
	Display 4.5 (1/2)�
	Display 4.5�(2/2)
	Display 4.6
	Display 4.7
	Display 4.8
	Display 4.9�(1/3)
	Display 4.9�(2/3)
	Display 4.9�(3/3)
	Display 4.10 (1/2)�
	Display 4.10 (2/2)�
	Display 4.11 (1/2)�
	Display 4.11�(2/2)
	Display 4.12 (1/2)�
	Display 4.12�(2/2)
	Display 4.13 (1/2)�
	Display 4.13�(2/2)
	Display 4.14 (1/2)�

