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Arrays in Functions

= Indexed variables can be arguments to functions
= Example: If a program contains these

declarations:
Int 1, n, a[10];

void my_function(int n);

= Variables a[0] through a[9] are of type int,

making these calls legal:

my_function( a]
my_function( a]
my_function( a]
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Arrays as Function Arguments

= A formal parameter can be for an entire array

= Such a parameter is called an array parameter
= It IS not a call-by-value parameter
= It is not a call-by-reference parameter

= Array parameters behave much like call-by-
reference parameters

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde 7-4



Array Parameter Declaration

= An array parameter is indicated using empty
brackets in the parameter list such as

void fill_up(int a[ |, int size);
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Function Calls With Arrays

= If function fill_up is declared in this way:
void fill_up(int a[ |, int size);

o and array score Is declared this way:
Int score[5], number_of scores;

o fill_up is called in this way:
fill_up(score, number_of scores);

Display 7.4
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Function Call Detalls

= A formal parameter is identified as an array
parameter by the [ |'s with no index expression

void fill_up(int a[ |, int size);

= An array argument does not use the [ ]'s

fill_up(score, number_of_scores);
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Array Formal Parameters

= An array formal parameter is a placeholder for
the argument

= When an array Is an argument in a function
call, an action performed on the array
parameter is performed on the array argument

= The values of the indexed variables can be
changed by the function
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Array Argument Detalls

= What does the computer know about an array?

= The base type

= The address of the first iIndexed variable

= The number of iIndexed variables

= What does a function know about an array
argument?

= The base type
= The address of the first indexed variable
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How does the function know how to access
the array elements?

= T0 access element i, the function uses the
formula
= address in memory of element | =
start address of array + | * element size

« Start address of array = address of first element in
array

=« E.Q.

score[2] is an indexed variable to the location identified by
the above formula
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Array Parameter Considerations

s Because a function does not know the size of
an array argument...

= The programmer should include a formal
parameter that specifies the size of the array

= The function can process arrays of various
sizes

= Function fill_up from Display 7.4 can be used to fill
an array of any size:

fill_up(score, 5);
fill_up(time, 10);
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const Modifier

= Array parameters allow a function to change the
values stored In the array argument

= If a function should not change the values of the
array argument, use the modifier const

= An array parameter modified with const is a
constant array parameter

=« Example:
void show the world(const int a[ |, int size);
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Using const With Arrays
= If const is used to modify an array parameter:

= const is used in both the function declaration
and definition to modify the array parameter

= The compiler will issue an error if you write
code that changes the values stored in the
array parameter
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Function Calls and const

= If a function with a constant array parameter
calls another function using the const array
parameter as an argument...

= The called function must use a constant
array parameter as a placeholder for the array

= The compiler will issue an error if a function is
called that does not have a const array
parameter to accept the array argument
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const Parameters Example

= double compute average(int a[ |, int size);

void show_difference(const int g ], int size)

{

double average = compute_average(a, size);

}

= compute_average has no constant array parameter

= This code generates an error message because
compute average could change the array parameter
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Returning An Array

s Recall that functions can return a value of
type int, double, char, ..., or a class type

= Functions cannot return arrays

= We learn later how to return a pointer to an array
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Programming With Arrays

= The size needed for an array is changeable

= Often varies from one run of a program to
another

= Is often not known when the program is written

= A common solution to the size problem

= Declare the array size to be the largest that
could be needed

= Decide how to deal with partially filled arrays
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Partially Filled Arrays

= When using arrays that are partially filled

= Functions dealing with the array may not need
to know the declared size of the array, only
how many elements are stored in the array

= A parameter, number_used, may be sufficient
to ensure that referenced index values are
legal

= A function such as fill_array in Display 7.9
needs to know the declared size of the array

Display 7.9 (1) | | Display 7.9 (2) | | Display 7.9 (3)
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Constants as Arguments

= When function fill_array (Display 7.9) is called,
MAX_NUMBER_SCORES is used as an
argument

= Can't MAX_NUMBER_SCORES be used
directly without making it an argument?

=« Using MAX_NUMBER_SCORES as an argument
makes it clear that fill_array requires the array's
declared size

=« This makes fill_array easier to be used in other
programs
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Multi-Dimensional Arrays

= C++ allows arrays with multiple index values

= char page [30] [100];
declares an array of characters named page

= page has two index values:
The first ranges from 0O to 29
The second ranges from O to 99

= Each index In enclosed in its own brackets

= Page can be visualized as an array of
30 rows and 100 columns
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Index Values of page

= The indexed variables for array page are
page[0][0], page[O][1], ..., page[0][99]
page[1][0], page[1][1], ..., page[1][99]

pagét29][0], page[29][1], ... , page[29][99]

= page Is actually an array of size 30
= page's base type is an array of 100 characters
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Multidimensional Array Parameters

= Recall that the size of an array Is not needed
when declaring a formal parameter:
void display _line(const char a[ ], int size);

= The base type of a multi-dimensional array must
be completely specified in the parameter
declaration

= void display page(const char page][ | [100],
Int size_dimension_1);
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Indexed Variable as an Argument

//ITlustrates the use of an indexed variable as an argument.
//Adds 5 to each employee’s allowed number of vacation days.
#include <iostream>

const int NUMBER_OF_EMPLOYEES = 3;

int adjust_days(int old_days);
//Returns old_days plus 5.

int main()

{
using namespace std;
int vacation[NUMBER_OF_EMPLOYEES], number;
cout << "Enter allowed vacation days for employees 1"
<< " through " << NUMBER_OF_EMPLOYEES << ":\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cin >> vacation[number-1];
for (number = 0; number < NUMBER_OF_EMPLOYEES; number++)
vacation[number] = adjust_days(vacation[number]);
cout << "The revised number of vacation days are:\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cout << "Employee number " << number
<< " vacation days = " << vacation[number-1] << endl;
return 0;
}
int adjust_days(int old_days)
{
return (old_days + 5);
}

Sample Dialogue

Enter allowed vacation days for employees 1 through 3:
10 205

The revised number of vacation days are:

Employee number 1 vacation days = 15

Employee number 2 vacation days = 25

Employee number 3 vacation days = 10
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Display 7.4 <Back Next>

Function with an Array Parameter

Function Declaration
void fill_up(int all, int size);
//Precondition: size is the declared size of the array a.

//The user will type 1in size integers.
//Postcondition: The array a is filled with size integers

//from the keyboard.
Function Definition

//Uses iostream:
void fill_up(int all, int size)

{

using namespace std;

cout << "Enter " << size << " numbers:\n";

for (int i = 0; 1 < size; i++)

cin >> alil;

size--;

cout << "The last array index used is " << size << endl;
}
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Display 7.9 (1/3)

//Shows the difference between each of a 1ist of golf scores and their average.

#include <iostream>

const int MAX_NUMBER_SCORES = 10;

void fill_array(int a[], int size, int& number_used); Ba.Ck NEXt
//Precondition: size is the declared size of the array a.

//Postcondition: number_used is the number of values stored in a.

//a[0] through a[number_used-1] have been filled with

//nonnegative integers read from the keyboard.

double compute_average(const int a[], int number used);
//Precondition: a[0] through a[number_used-1] have values; number_used > 0.
//Returns the average of numbers a[0] through a[number_used-1].

void show_difference(const int a[], int number_used);

//Precondition: The first number_used indexed variables of a have values.
//Postcondition: Gives screen output showing how much each of the first
//number_used elements of a differs from their average.

int main()

{
using namespace std;
int score[MAX_NUMBER_SCORES], number used;
cout << "This program reads golf scores and shows\n"
<< "how much each differs from the average.\n";
cout << "Enter golf scores:\n";
fill_array(score, MAX_NUMBER_SCORES, number_used);
show_difference(score, number_used);
return 0;
1

//Uses iostream:
void fill_array(int a[], int size, 1nt& number_used)
{
using namespace std;
cout << "Enter up to " << size << " nonnegative whole numbers.\n"
<< "Mark the end of the 1list with a negative number.\n";

" "
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Partially Filled Array (parf 2 of 3)

3

int next, index = 0;
cin »>> next;
while ((next >= 0) && (index < size))

{
a[index] = next;
index++;
cin >> next;

}

number_used = index;

double compute_average(const int a[], int number_used)

{

}

double total = 0;

for (int index = 0; index < number_used; index++)
total = total + a[index];

if (number_used > 0)

{
return (total/number_used);
}
else
{
using namespace std;
cout << "ERROR: number of elements is 0 in compute_average.\n"
<< "compute_average returns 0.\n";
return 0;
}

void show_difference(const int a[], int number_used)

{

using namespace std;
double average = compute_average(a, number_used);
cout << "Average of the " << number_used

<< " scores = " << average << endl

<< "The scores are:\n";
for (int index = 0; index < number_used; index++)
cout << afindex] << " differs from average by "

<< (a[index] - average) << endl;
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Display 7.9
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Partially Filled Array (part 3 of 3)

Sample Dialogue

This program reads golf scores and shows
how much each differs from the average.
Enter golf scores:

Enter up to 10 nonnegative whole numbers.
Mark the end of the 1list with a negative number.
69 74 68 -1

Average of the 3 scores = 70.3333

The scores are:

69 differs from average by -1.33333

74 differs from average by 3.66667

68 differs from average by -2.33333
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