APS105: Lecture 17

Wael Aboelsaadat

wael@cs.toronto.edu

http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as
supplied by Addison Wesley

Download the code shown in lecture from course website:
Handouts =» Lectures Source Code - Wael

-:A(ldison -
Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Arrays In Functions

Problem
Solving

PEARSON

"Addison
Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Arrays in Functions

= Indexed variables can be arguments to functions
= Example: If a program contains these

declarations:
Int 1, n, a[10];

void my_function(int n);

= Variables a[0] through a[9] are of type int,

making these calls legal:

my_function(a]
my_function(a]
my_function(a]

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

0.
Bi:) Display 7.3

Slide 7- 3

Arrays as Function Arguments

= A formal parameter can be for an entire array

= Such a parameter is called an array parameter
= It IS not a call-by-value parameter
= It is not a call-by-reference parameter

= Array parameters behave much like call-by-
reference parameters

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde 7-4

Array Parameter Declaration

= An array parameter is indicated using empty
brackets in the parameter list such as

void fill_up(int a[|, int size);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7-5

Function Calls With Arrays

= If function fill_up is declared in this way:
void fill_up(int a[|, int size);

o and array score Is declared this way:
Int score[5], number_of scores;

o fill_up is called in this way:
fill_up(score, number_of scores);

Display 7.4

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde 7- 6

Function Call Detalls

= A formal parameter is identified as an array
parameter by the [|'s with no index expression

void fill_up(int a[|, int size);

= An array argument does not use the []'s

fill_up(score, number_of_scores);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde -7

Array Formal Parameters

= An array formal parameter is a placeholder for
the argument

= When an array Is an argument in a function
call, an action performed on the array
parameter is performed on the array argument

= The values of the indexed variables can be
changed by the function

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7-8

Array Argument Detalls

= What does the computer know about an array?

= The base type

= The address of the first iIndexed variable

= The number of iIndexed variables

= What does a function know about an array
argument?

= The base type
= The address of the first indexed variable

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7-9

How does the function know how to access
the array elements?

= T0 access element i, the function uses the
formula
= address in memory of element | =
start address of array + | * element size

« Start address of array = address of first element in
array

=« E.Q.

score[2] is an indexed variable to the location identified by
the above formula

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 10

Array Parameter Considerations

s Because a function does not know the size of
an array argument...

= The programmer should include a formal
parameter that specifies the size of the array

= The function can process arrays of various
sizes

= Function fill_up from Display 7.4 can be used to fill
an array of any size:

fill_up(score, 5);
fill_up(time, 10);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-11

const Modifier

= Array parameters allow a function to change the
values stored In the array argument

= If a function should not change the values of the
array argument, use the modifier const

= An array parameter modified with const is a
constant array parameter

=« Example:
void show the world(const int a[|, int size);

Slide 7- 12

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using const With Arrays
= If const is used to modify an array parameter:

= const is used in both the function declaration
and definition to modify the array parameter

= The compiler will issue an error if you write
code that changes the values stored in the
array parameter

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-13

Function Calls and const

= If a function with a constant array parameter
calls another function using the const array
parameter as an argument...

= The called function must use a constant
array parameter as a placeholder for the array

= The compiler will issue an error if a function is
called that does not have a const array
parameter to accept the array argument

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-14

const Parameters Example

= double compute average(int a[|, int size);

void show_difference(const int g], int size)

{

double average = compute_average(a, size);

}

= compute_average has no constant array parameter

= This code generates an error message because
compute average could change the array parameter

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 15

Returning An Array

s Recall that functions can return a value of
type int, double, char, ..., or a class type

= Functions cannot return arrays

= We learn later how to return a pointer to an array

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 16

Programming with Arrays

Problem
Solving

PEARSON

"Addison
Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Programming With Arrays

= The size needed for an array is changeable

= Often varies from one run of a program to
another

= Is often not known when the program is written

= A common solution to the size problem

= Declare the array size to be the largest that
could be needed

= Decide how to deal with partially filled arrays

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 18

Partially Filled Arrays

= When using arrays that are partially filled

= Functions dealing with the array may not need
to know the declared size of the array, only
how many elements are stored in the array

= A parameter, number_used, may be sufficient
to ensure that referenced index values are
legal

= A function such as fill_array in Display 7.9
needs to know the declared size of the array

Display 7.9 (1) | | Display 7.9 (2) | | Display 7.9 (3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 19

Constants as Arguments

= When function fill_array (Display 7.9) is called,
MAX_NUMBER_SCORES is used as an
argument

= Can't MAX_NUMBER_SCORES be used
directly without making it an argument?

=« Using MAX_NUMBER_SCORES as an argument
makes it clear that fill_array requires the array's
declared size

=« This makes fill_array easier to be used in other
programs

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 20

Multidimensional Arrays

Problem
Solving

PEARSON

"Addison
Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Multi-Dimensional Arrays

= C++ allows arrays with multiple index values

= char page [30] [100];
declares an array of characters named page

= page has two index values:
The first ranges from 0O to 29
The second ranges from O to 99

= Each index In enclosed in its own brackets

= Page can be visualized as an array of
30 rows and 100 columns

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-22

Index Values of page

= The indexed variables for array page are
page[0][0], page[O][1], ..., page[0][99]
page[1][0], page[1][1], ..., page[1][99]

pagét29][0], page[29][1], ... , page[29][99]

= page Is actually an array of size 30
= page's base type is an array of 100 characters

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-23

Multidimensional Array Parameters

= Recall that the size of an array Is not needed
when declaring a formal parameter:
void display _line(const char a[], int size);

= The base type of a multi-dimensional array must
be completely specified in the parameter
declaration

= void display page(const char page][| [100],
Int size_dimension_1);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 24

Indexed Variable as an Argument

//ITlustrates the use of an indexed variable as an argument.
//Adds 5 to each employee’s allowed number of vacation days.
#include <iostream>

const int NUMBER_OF_EMPLOYEES = 3;

int adjust_days(int old_days);
//Returns old_days plus 5.

int main()

{
using namespace std;
int vacation[NUMBER_OF_EMPLOYEES], number;
cout << "Enter allowed vacation days for employees 1"
<< " through " << NUMBER_OF_EMPLOYEES << ":\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cin >> vacation[number-1];
for (number = 0; number < NUMBER_OF_EMPLOYEES; number++)
vacation[number] = adjust_days(vacation[number]);
cout << "The revised number of vacation days are:\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cout << "Employee number " << number
<< " vacation days = " << vacation[number-1] << endl;
return 0;
}
int adjust_days(int old_days)
{
return (old_days + 5);
}

Sample Dialogue

Enter allowed vacation days for employees 1 through 3:
10 205

The revised number of vacation days are:

Employee number 1 vacation days = 15

Employee number 2 vacation days = 25

Employee number 3 vacation days = 10

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Display 7.3

< Back

Next>

Slide 7- 25

Display 7.4 <Back Next>

Function with an Array Parameter

Function Declaration
void fill_up(int all, int size);
//Precondition: size is the declared size of the array a.

//The user will type 1in size integers.
//Postcondition: The array a is filled with size integers

//from the keyboard.
Function Definition

//Uses iostream:
void fill_up(int all, int size)

{

using namespace std;

cout << "Enter " << size << " numbers:\n";

for (int i = 0; 1 < size; i++)

cin >> alil;

size--;

cout << "The last array index used is " << size << endl;
}

Slide 7- 26

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Display 7.9 (1/3)

//Shows the difference between each of a 1ist of golf scores and their average.

#include <iostream>

const int MAX_NUMBER_SCORES = 10;

void fill_array(int a[], int size, int& number_used); Ba.Ck NEXt
//Precondition: size is the declared size of the array a.

//Postcondition: number_used is the number of values stored in a.

//a[0] through a[number_used-1] have been filled with

//nonnegative integers read from the keyboard.

double compute_average(const int a[], int number used);
//Precondition: a[0] through a[number_used-1] have values; number_used > 0.
//Returns the average of numbers a[0] through a[number_used-1].

void show_difference(const int a[], int number_used);

//Precondition: The first number_used indexed variables of a have values.
//Postcondition: Gives screen output showing how much each of the first
//number_used elements of a differs from their average.

int main()

{
using namespace std;
int score[MAX_NUMBER_SCORES], number used;
cout << "This program reads golf scores and shows\n"
<< "how much each differs from the average.\n";
cout << "Enter golf scores:\n";
fill_array(score, MAX_NUMBER_SCORES, number_used);
show_difference(score, number_used);
return 0;
1

//Uses iostream:
void fill_array(int a[], int size, 1nt& number_used)
{
using namespace std;
cout << "Enter up to " << size << " nonnegative whole numbers.\n"
<< "Mark the end of the 1list with a negative number.\n";

" "

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 27

Partially Filled Array (parf 2 of 3)

3

int next, index = 0;
cin »>> next;
while ((next >= 0) && (index < size))

{
a[index] = next;
index++;
cin >> next;

}

number_used = index;

double compute_average(const int a[], int number_used)

{

}

double total = 0;

for (int index = 0; index < number_used; index++)
total = total + a[index];

if (number_used > 0)

{
return (total/number_used);
}
else
{
using namespace std;
cout << "ERROR: number of elements is 0 in compute_average.\n"
<< "compute_average returns 0.\n";
return 0;
}

void show_difference(const int a[], int number_used)

{

using namespace std;
double average = compute_average(a, number_used);
cout << "Average of the " << number_used

<< " scores = " << average << endl

<< "The scores are:\n";
for (int index = 0; index < number_used; index++)
cout << afindex] << " differs from average by "

<< (a[index] - average) << endl;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Display 7.9 (2/3)

< Back

Next

Slide 7- 28

Display 7.9

(3/3) (Back | [Next -

Partially Filled Array (part 3 of 3)

Sample Dialogue

This program reads golf scores and shows
how much each differs from the average.
Enter golf scores:

Enter up to 10 nonnegative whole numbers.
Mark the end of the 1list with a negative number.
69 74 68 -1

Average of the 3 scores = 70.3333

The scores are:

69 differs from average by -1.33333

74 differs from average by 3.66667

68 differs from average by -2.33333

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 29

	APS105: Lecture 17
	7.2
	Arrays in Functions
	Arrays as Function Arguments
	Array Parameter Declaration
	Function Calls With Arrays
	Function Call Details
	Array Formal Parameters
	Array Argument Details
	How does the function know how to access the array elements?
	Array Parameter Considerations
	const Modifier
	Using const With Arrays
	Function Calls and const
	const Parameters Example
	Returning An Array
	7.3
	Programming With Arrays
	Partially Filled Arrays
	Constants as Arguments
	7.4
	Multi-Dimensional Arrays
	Index Values of page
	Multidimensional Array Parameters
	Display 7.3�
	Display 7.4
	Display 7.9 (1/3)�
	Display 7.9 (2/3)�
	Display 7.9�(3/3)

