
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as
supplied by Addison Wesley

APS105: Lecture 17

Download the code shown in lecture from course website:
Handouts  Lectures Source Code - Wael

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

7.2

Arrays in Functions

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 3

 Indexed variables can be arguments to functions
 Example: If a program contains these

declarations:
int i, n, a[10];
void my_function(int n);

 Variables a[0] through a[9] are of type int,
making these calls legal:

my_function(a[0]);
my_function(a[3]);
my_function(a[i]);

Display 7.3

Arrays in Functions

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 4

Arrays as Function Arguments

 A formal parameter can be for an entire array
 Such a parameter is called an array parameter

 It is not a call-by-value parameter
 It is not a call-by-reference parameter
 Array parameters behave much like call-by-

reference parameters

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 5

Array Parameter Declaration

 An array parameter is indicated using empty
brackets in the parameter list such as

void fill_up(int a[], int size);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 6

Display 7.4

Function Calls With Arrays

 If function fill_up is declared in this way:
void fill_up(int a[], int size);

 and array score is declared this way:
int score[5], number_of_scores;

 fill_up is called in this way:
fill_up(score, number_of_scores);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 7

Function Call Details

 A formal parameter is identified as an array
parameter by the []'s with no index expression

void fill_up(int a[], int size);

 An array argument does not use the []'s

fill_up(score, number_of_scores);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 8

Array Formal Parameters

 An array formal parameter is a placeholder for
the argument
 When an array is an argument in a function

call, an action performed on the array
parameter is performed on the array argument

 The values of the indexed variables can be
changed by the function

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 9

Array Argument Details

 What does the computer know about an array?
 The base type
 The address of the first indexed variable
 The number of indexed variables

 What does a function know about an array
argument?
 The base type
 The address of the first indexed variable

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 10

How does the function know how to access
the array elements?

 To access element i, the function uses the
formula

 address in memory of element i =
start address of array + i * element size
 Start address of array = address of first element in

array)
 E.g.

Score[2] is an indexed variable to the location identified by
the above formula

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 11

Array Parameter Considerations

 Because a function does not know the size of
an array argument…
 The programmer should include a formal

parameter that specifies the size of the array
 The function can process arrays of various

sizes
 Function fill_up from Display 7.4 can be used to fill

an array of any size:

fill_up(score, 5);
fill_up(time, 10);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 12

const Modifier

 Array parameters allow a function to change the
values stored in the array argument

 If a function should not change the values of the
array argument, use the modifier const

 An array parameter modified with const is a
constant array parameter
 Example:

void show_the_world(const int a[], int size);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 13

Using const With Arrays

 If const is used to modify an array parameter:

 const is used in both the function declaration
and definition to modify the array parameter

 The compiler will issue an error if you write
code that changes the values stored in the
array parameter

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 14

Function Calls and const

 If a function with a constant array parameter
calls another function using the const array
parameter as an argument…

 The called function must use a constant
array parameter as a placeholder for the array

 The compiler will issue an error if a function is
called that does not have a const array
parameter to accept the array argument

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 15

const Parameters Example

 double compute_average(int a[], int size);

void show_difference(const int a[], int size)
{

double average = compute_average(a, size);
…

}
 compute_average has no constant array parameter
 This code generates an error message because

compute_average could change the array parameter

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 16

Returning An Array

 Recall that functions can return a value of
type int, double, char, …, or a class type

 Functions cannot return arrays

 We learn later how to return a pointer to an array

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

7.3

Programming with Arrays

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 18

Programming With Arrays

 The size needed for an array is changeable
 Often varies from one run of a program to

another
 Is often not known when the program is written

 A common solution to the size problem
 Declare the array size to be the largest that

could be needed
 Decide how to deal with partially filled arrays

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 19

 When using arrays that are partially filled
 Functions dealing with the array may not need

to know the declared size of the array, only
how many elements are stored in the array

 A parameter, number_used, may be sufficient
to ensure that referenced index values are
legal

 A function such as fill_array in Display 7.9
needs to know the declared size of the array

Display 7.9 (1) Display 7.9 (2) Display 7.9 (3)

Partially Filled Arrays

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 20

Constants as Arguments

 When function fill_array (Display 7.9) is called,
MAX_NUMBER_SCORES is used as an
argument
 Can't MAX_NUMBER_SCORES be used

directly without making it an argument?
 Using MAX_NUMBER_SCORES as an argument

makes it clear that fill_array requires the array's
declared size

 This makes fill_array easier to be used in other
programs

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 21

Searching Arrays

 A sequential search is one way to search
an array for a given value
 Look at each element from first to last to see if

the target value is equal to any of the array
elements

 The index of the target value can be returned
to indicate where the value was found in the
array

 A value of -1 can be returned if the value was
not found

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 22

 The search function of Display 7.10…
 Uses a while loop to compare array elements

to the target value
 Sets a variable of type bool to true if the target

value is found, ending the loop
 Checks the boolean variable when the loop

ends to see if the target value was found
 Returns the index of the target value if found,

otherwise returns -1

Display 7.10 (1) Display 7.10 (2)

The search Function

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 23

Program Example:
Sorting an Array

 Sorting a list of values is very common task
 Create an alphabetical listing
 Create a list of values in ascending order
 Create a list of values in descending order

 Many sorting algorithms exist
 Some are very efficient
 Some are easier to understand

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 24

Program Example:
The Selection Sort Algorithm

 When the sort is complete, the elements of the
array are ordered such that

a[0] < a[1] < … < a [number_used -1]
 This leads to an outline of an algorithm:

for (int index = 0; index < number_used;
index++)

place the indexth smallest element in
a[index]

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 25

 One array is sufficient to do our sorting
 Search for the smallest value in the array
 Place this value in a[0], and place the value

that was in a[0] in the location where the
smallest was found

 Starting at a[1], find the smallest remaining
value swap it with the value currently in a[1]

 Starting at a[2], continue the process until the
array is sorted

Display 7.11 Display 7.12 (1-3)

Program Example:
Sort Algorithm Development

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 26

Section 7.3 Conclusion

 Can you

 Write a program that will read up to 10 letters
into an array and write the letters back to the
screen in the reverse order?

abcd should be output as dcba

Use a period as a sentinel value to mark the
end of input

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

7.4

Multidimensional Arrays

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 28

Multi-Dimensional Arrays

 C++ allows arrays with multiple index values
 char page [30] [100];

declares an array of characters named page
 page has two index values:

The first ranges from 0 to 29
The second ranges from 0 to 99

 Each index in enclosed in its own brackets
 Page can be visualized as an array of

30 rows and 100 columns

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 29

Index Values of page

 The indexed variables for array page are
page[0][0], page[0][1], …, page[0][99]
page[1][0], page[1][1], …, page[1][99]

 …
page[29][0], page[29][1], … , page[29][99]

 page is actually an array of size 30
 page's base type is an array of 100 characters

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 30

Multidimensional Array Parameters

 Recall that the size of an array is not needed
when declaring a formal parameter:
void display_line(const char a[], int size);

 The base type of a multi-dimensional array must
be completely specified in the parameter
declaration
 void display_page(const char page[] [100],

int size_dimension_1);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 31

Program Example:
Grading Program

 Grade records for a class can be stored in a
two-dimensional array
 For a class with 4 students and 3 quizzes the

array could be declared as

int grade[4][3];
 The first array index refers to the number of a

student
 The second array index refers to a quiz number

 Since student and quiz numbers start with one,
we subtract one to obtain the correct index

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 32

 The grading program uses one-dimensional
arrays to store…
 Each student's average score
 Each quiz's average score

 The functions that calculate these averages
use global constants for the size of the arrays
 This was done because

the functions seem to be
particular to this program

Display 7.17 (1-3)

Display 7.18

Display 7.19

Grading Program:
average scores

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 33

Section 7.5 Conclusion

 Can you

 Write code that will fill the array a(declared
below) with numbers typed at the keyboard?
The numbers will be input fiver per line,
on four lines.

int a[4][5];

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 34

Chapter 7 - End

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 35

Back Next

Display 7.1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 36

Back NextDisplay 7.2

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 37

Back Next

Display 7.3

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 38

Back NextDisplay 7.4

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 39

Back Next

Display 7.5

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 40

Back Next

Display 7.6 (1/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 41

Back Next

Display 7.6 (2/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 42

Back Next

Display 7.6 (3/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 43

Back Next
Display 7.7 (1/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 44

Back Next
Display 7.7
(2/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 45

NextBack

Display 7.8
(1/4)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 46

Back Next
Display 7.8 (2/4)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 47

NextBack

Display 7.8 (3/4)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 48

NextBack

Display 7.8
(4/4)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 49

Back Next

Display 7.9 (1/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 50

Back Next

Display 7.9 (2/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 51

Back Next
Display 7.9
(3/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 52

NextBack

Display 7.10 (1/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 53

Back Next

Display 7.10 (2/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 54

Back NextDisplay 7.11

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 55

Back Next

Display 7.12 (1/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 56

Back Next

Display 7.12 (2/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 57

Back Next

Display 7.13 (1/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 58

Back Next

Display 7.13 (2/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 59

Back Next

Display 7.13 (3/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 60

Back NextDisplay 7.14

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 61

Back NextDisplay 7.15

	APS105: Lecture 17
	7.2
	Arrays in Functions
	Arrays as Function Arguments
	Array Parameter Declaration
	Function Calls With Arrays
	Function Call Details
	Array Formal Parameters
	Array Argument Details
	How does the function know how to access the array elements?
	Array Parameter Considerations
	const Modifier
	Using const With Arrays
	Function Calls and const
	const Parameters Example
	Returning An Array
	7.3
	Programming With Arrays
	Partially Filled Arrays
	Constants as Arguments
	Searching Arrays
	The search Function
	Program Example:�Sorting an Array
	Program Example:�The Selection Sort Algorithm
	Program Example:� Sort Algorithm Development
	Section 7.3 Conclusion
	7.4
	Multi-Dimensional Arrays
	Index Values of page
	Multidimensional Array Parameters
	Program Example:�Grading Program
	Grading Program:�average scores
	Section 7.5 Conclusion
	Chapter 7 - End
	Display 7.1�
	Display 7.2
	Display 7.3�
	Display 7.4
	Display 7.5�
	Display 7.6 (1/3)�
	Display 7.6 (2/3)�
	Display 7.6 (3/3)�
	Display 7.7 (1/2)�
	Display 7.7�(2/2)
	Display 7.8 �(1/4)
	Display 7.8 (2/4)�
	Display 7.8 (3/4)�
	Display 7.8 �(4/4)
	Display 7.9 (1/3)�
	Display 7.9 (2/3)�
	Display 7.9�(3/3)
	Display 7.10 (1/2)�
	Display 7.10 (2/2)�
	Display 7.11
	Display 7.12 (1/2)�
	Display 7.12 (2/2)�
	Display 7.13 (1/3)�
	Display 7.13 (2/3)�
	Display 7.13 (3/3)�
	Display 7.14
	Display 7.15

