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7.2

Arrays in Functions
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 Indexed variables can be arguments to functions
 Example:    If a program contains these 

declarations: 
int i, n, a[10];
void my_function(int n);

 Variables a[0] through a[9] are of type int, 
making these calls legal:

my_function( a[ 0 ] );
my_function( a[ 3 ] );
my_function( a[  i ]  );                          

Display 7.3

Arrays in Functions
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Arrays as Function Arguments

 A formal parameter can be for an entire array
 Such a parameter is called an array parameter

 It is not a call-by-value parameter
 It is not a call-by-reference parameter
 Array parameters behave much like call-by-

reference parameters
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Array Parameter Declaration

 An array parameter is indicated using empty
brackets in the parameter list such as

void fill_up(int a[ ], int size);
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Display 7.4

Function Calls With Arrays

 If function fill_up is declared in this way:
void fill_up(int a[ ], int size);

 and array score is declared this way:
int score[5], number_of_scores;

 fill_up is called in this way:
fill_up(score, number_of_scores);
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Function Call Details

 A formal parameter is identified as an array 
parameter by the [ ]'s with no index expression

void fill_up(int a[ ], int size);

 An array argument does not use the [ ]'s

fill_up(score, number_of_scores);
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Array Formal Parameters

 An array formal parameter is a placeholder for
the argument
 When an array is an argument in a function 

call, an action performed on the array 
parameter is performed on the array argument

 The values of the indexed variables can be 
changed by the function
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Array Argument Details

 What does the computer know about an array?
 The base type 
 The address of the first indexed variable
 The number of indexed variables

 What does a function know about an array 
argument?
 The base type
 The address of the first indexed variable
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How does the function know how to access 
the array elements?

 To access element i, the function uses the 
formula

 address in memory of element i = 
start address of array + i * element size
 Start address of array =  address of first element in 

array)
 E.g.

Score[2] is an indexed variable to the location identified by 
the above formula
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Array Parameter Considerations

 Because a function does not know the size of 
an array argument…
 The programmer should include a formal 

parameter that specifies the size of the array
 The function can process arrays of various 

sizes
 Function fill_up from Display 7.4 can be used to fill

an array of any size:

fill_up(score, 5);
fill_up(time, 10);
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const Modifier

 Array parameters allow a function to change the
values stored in the array argument

 If a function should not change the values of the
array argument, use the modifier const

 An array parameter modified with const is a 
constant array parameter
 Example:   

void show_the_world(const int a[ ], int size);
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Using const With Arrays

 If const is used to modify an array parameter:

 const is used in both the function declaration 
and definition to modify the array parameter

 The compiler will issue an error if you write 
code that changes the values stored in the 
array parameter
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Function Calls and const

 If a function with a constant array parameter
calls another function using the const array
parameter as an argument…

 The called function must use a constant
array parameter as a placeholder for the array

 The compiler will issue an error if a function is 
called that does not have a const array 
parameter to accept the array argument
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const Parameters Example

 double compute_average(int a[ ], int size);

void show_difference(const int a[ ], int size)
{

double average = compute_average(a, size);
…

}
 compute_average has no constant array parameter
 This code generates an error message because

compute_average could change the array parameter
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Returning An Array

 Recall that functions can return a value of 
type int, double, char, …, or a class type

 Functions cannot return arrays

 We learn later how to return a pointer to an array
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7.3

Programming with Arrays
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Programming With Arrays

 The size needed for an array is changeable
 Often varies from one run of a program to 

another
 Is often not known when the program is written

 A common solution to the size problem
 Declare the array size to be the largest that 

could be needed
 Decide how to deal with partially filled arrays
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 When using arrays that are partially filled
 Functions dealing with the array may not need 

to know the declared size of the array, only 
how many elements are stored in the array 

 A parameter, number_used,  may be sufficient 
to ensure that referenced index values are 
legal

 A function such as fill_array in Display 7.9 
needs to know the declared size of the array

Display 7.9 (1) Display 7.9 (2) Display 7.9 (3)

Partially Filled Arrays
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Constants as Arguments

 When function fill_array (Display 7.9) is called,
MAX_NUMBER_SCORES is used as an 
argument 
 Can't MAX_NUMBER_SCORES be used 

directly without making it an argument?
 Using MAX_NUMBER_SCORES as an argument 

makes it clear that fill_array requires the array's 
declared size 

 This makes fill_array easier to be used in other 
programs
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Searching Arrays

 A sequential search is one way to search
an array for a given value
 Look at each element from first to last to see if 

the target value is equal to any of the array 
elements

 The index of the target value can be returned 
to indicate where the value was found in the 
array

 A value of -1 can be returned if the value was 
not found
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 The search function of Display 7.10…
 Uses a while loop to compare array elements 

to the target value
 Sets a variable of type bool to true if the target 

value is found, ending the loop
 Checks the boolean variable when the loop 

ends to see if the target value was found
 Returns the index of the target value if found, 

otherwise returns -1

Display 7.10 (1) Display 7.10 (2)

The search Function
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Program Example:
Sorting an Array

 Sorting a list of values is very common task
 Create an alphabetical listing
 Create a list of values in ascending order
 Create a list of values in descending order

 Many sorting algorithms exist
 Some are very efficient
 Some are easier to understand
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Program Example:
The Selection Sort Algorithm

 When the sort is complete, the elements of the 
array are ordered such that 

a[0] < a[1] < … < a [ number_used -1]
 This leads to an outline of an algorithm:

for (int index = 0; index < number_used; 
index++)

place the indexth smallest element in 
a[index]
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 One array is sufficient to do our sorting
 Search for the smallest value in the array
 Place this value in a[0], and place the value 

that was in a[0] in the location where the 
smallest was found

 Starting at a[1], find the smallest remaining 
value swap it with the value currently in a[1]

 Starting at a[2], continue the process until the 
array is sorted

Display 7.11 Display 7.12 (1-3)

Program Example:
Sort Algorithm Development
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Section 7.3 Conclusion

 Can you

 Write a program that will read up to 10 letters 
into an array and write the letters back to the 
screen in the reverse order?

abcd should be output as dcba

Use a period as a sentinel value to mark the 
end of input
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7.4

Multidimensional Arrays
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Multi-Dimensional Arrays

 C++ allows arrays with multiple index values
 char page [30] [100];

declares an array of characters named page
 page has two index values:

The first ranges from 0 to 29
The second ranges from 0 to 99

 Each index  in enclosed in its own brackets
 Page can be visualized as an array of 

30 rows and 100 columns
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Index Values of page

 The indexed variables for array page are
page[0][0], page[0][1], …, page[0][99]
page[1][0], page[1][1], …, page[1][99]

 …
page[29][0], page[29][1], … , page[29][99]

 page is actually an array of size 30
 page's base type is an array of 100 characters
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Multidimensional Array Parameters

 Recall that the size of an array is not needed
when declaring a formal parameter:
void display_line(const char a[ ], int size);  

 The base type of a multi-dimensional array must
be completely specified in the parameter 
declaration
 void display_page(const char page[ ] [100], 

int size_dimension_1);
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Program Example:
Grading Program

 Grade records for a class can be stored in a 
two-dimensional array
 For a class with 4 students and 3 quizzes the 

array could be declared as

int grade[4][3];
 The first array index  refers to the number of a 

student
 The second array index refers to a quiz number

 Since student and quiz numbers start with one, 
we subtract one to obtain the correct index
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 The grading program uses one-dimensional 
arrays to store…
 Each student's average score
 Each quiz's average score

 The functions that calculate these averages
use global constants for the size of the arrays
 This was done because                                     

the functions seem to be 
particular to this program

Display 7.17 (1-3) 

Display 7.18

Display 7.19

Grading Program:
average scores
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Section 7.5 Conclusion

 Can you

 Write code that will fill the array a(declared 
below) with numbers typed at the keyboard?  
The numbers will be input fiver per line,         
on four lines.

int a[4][5];
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Chapter 7 - End
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