A
AA4

PEARSON

“Addison
Wesley

APS105: Lecture 17

Wael Aboelsaadat

wael@cs.toronto.edu

http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as
supplied by Addison Wesley

Download the code shown in lecture from course website: § Problem

Handouts =» Lectures Source Code - Wael Solving

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

S

} Problem
| Solving

G

PEARSON

Add

ison
Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Arrays in Functions

= Indexed variables can be arguments to functions
= Example: If a program contains these

declarations:
Int 1, n, a[10];

void my_function(int n);

= Variables a[0] through a[9] are of type int,

making these calls legal:

my_function(a]
my_function(a]
my_function(a]

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

0.
Bi:) Display 7.3

Slide 7- 3

Arrays as Function Arguments

= A formal parameter can be for an entire array

= Such a parameter is called an array parameter
= It IS not a call-by-value parameter
= It is not a call-by-reference parameter

= Array parameters behave much like call-by-
reference parameters

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 7-4

Array Parameter Declaration

= An array parameter is indicated using empty
brackets in the parameter list such as

void fill_up(int a[|, int size);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 7-5

Function Calls With Arrays

= If function fill_up is declared in this way:
void fill_up(int a[|, int size);

o and array score Is declared this way:
Int score[5], number_of scores;

o fill_up is called in this way:
fill_up(score, number_of scores);

Display 7.4

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 7- 6

Function Call Detalls

= A formal parameter is identified as an array
parameter by the [|'s with no index expression

void fill_up(int a[|, int size);

= An array argument does not use the []'s

fill_up(score, number_of_scores);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 7-7

Array Formal Parameters

= An array formal parameter is a placeholder for
the argument

= When an array is an argument in a function
call, an action performed on the array
parameter is performed on the array argument

= The values of the indexed variables can be
changed by the function

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 7-8

Array Argument Detalls

= What does the computer know about an array?

= The base type

= The address of the first iIndexed variable

= The number of iIndexed variables

= What does a function know about an array
argument?

= The base type
= The address of the first indexed variable

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 7-9

How does the function know how to access
the array elements?

= T0 access element i, the function uses the
formula
= address in memory of element | =
start address of array + | * element size

« Start address of array = address of first element in
array)

=« E.Q.

Score[2] is an indexed variable to the location identified by
the above formula

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 10

Array Parameter Considerations

s Because a function does not know the size of
an array argument...

= The programmer should include a formal
parameter that specifies the size of the array

= The function can process arrays of various
sizes

= Function fill_up from Display 7.4 can be used to fill
an array of any size:

fill_up(score, 5);
fill_up(time, 10);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-11

const Modifier

= Array parameters allow a function to change the
values stored In the array argument

= If a function should not change the values of the
array argument, use the modifier const

= An array parameter modified with const is a
constant array parameter

Example:
void show the world(const int a[|, int size);

Slide 7- 12

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using const With Arrays
= If const is used to modify an array parameter:

= const is used in both the function declaration
and definition to modify the array parameter

=« The compiler will issue an error if you write
code that changes the values stored in the
array parameter

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 13

Function Calls and const

= If a function with a constant array parameter
calls another function using the const array
parameter as an argument...

= The called function must use a constant
array parameter as a placeholder for the array

= The compiler will issue an error if a function is
called that does not have a const array
parameter to accept the array argument

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 14

const Parameters Example

= double compute average(int a[|, int size);

void show_difference(const int g], int size)

{

double average = compute_average(a, size);

}

= compute_average has no constant array parameter

= This code generates an error message because
compute average could change the array parameter

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 15

Returning An Array

s Recall that functions can return a value of
type int, double, char, ..., or a class type

= Functions cannot return arrays

= We learn later how to return a pointer to an array

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 16

} Problem
| Solving

: ' (h |
i +-|
A

PEARSON

Add

ison
Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Programming With Arrays

= The size needed for an array is changeable

= Often varies from one run of a program to
another

= Is often not known when the program is written

= A common solution to the size problem

= Declare the array size to be the largest that
could be needed

= Decide how to deal with partially filled arrays

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-18

Partially Filled Arrays

= When using arrays that are partially filled

= Functions dealing with the array may not need
to know the declared size of the array, only
how many elements are stored in the array

= A parameter, number_used, may be sufficient
to ensure that referenced index values are
legal

= A function such as fill_array in Display 7.9
needs to know the declared size of the array

Display 7.9 (1) | | Display 7.9 (2) | | Display 7.9 (3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 19

Constants as Arguments

= When function fill_array (Display 7.9) is called,
MAX_NUMBER_SCORES is used as an
argument

« Can't MAX_NUMBER_SCORES be used
directly without making it an argument?

=« Using MAX_NUMBER_SCORES as an argument
makes it clear that fill_array requires the array's
declared size

=« This makes fill_array easier to be used in other
programs

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 20

Searching Arrays

= A sequential search is one way to search
an array for a given value

= Look at each element from first to last to see If
the target value is equal to any of the array
elements

= The index of the target value can be returned
to Indicate where the value was found in the
array

= A value of -1 can be returned if the value was
not found

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-21

The search Function

= The search function of Display 7.10...

= Uses a while loop to compare array elements
to the target value

= Sets a variable of type bool to true If the target
value is found, ending the loop

= Checks the boolean variable when the loop
ends to see If the target value was found

= Returns the index of the target value if found,
otherwise returns -1

Display 7.10 (1) Display 7.10 (2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-22

Program Example:
Sorting an Array

= Sorting a list of values Is very common task
=« Create an alphabetical listing
= Create a list of values in ascending order
=« Create a list of values in descending order
= Many sorting algorithms exist
= Some are very efficient
= Some are easier to understand

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 23

Program Example:
The Selection Sort Algorithm

= When the sort is complete, the elements of the
array are ordered such that

al0] <a[l] < ... <a[number_used -1]
= This leads to an outline of an algorithm:
for (int index = 0; index < number_used,;
Index++)
place the indexth smallest element In
alindex]

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 24

Program Example:
Sort Algorithm Development

= One array Is sufficient to do our sorting
= Search for the smallest value in the array

= Place this value in a[0], and place the value
that was in a|0] in the location where the

smallest was found

» Starting at a[1], find the smallest remaining
value swap it with the value currently in a[1]

= Starting at a[2], continue the process until the
array Is sorted

Display 7.11 | Display 7.12 (1-3)

Slide 7- 25

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Section 7.3 Conclusion
= Canyou

= Write a program that will read up to 10 letters
Into an array and write the letters back to the
screen in the reverse order?

abcd should be output as dcba

Use a period as a sentinel value to mark the
end of input

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 26

} Problem
| Solving

: ' (h |
i +-|
A

PEARSON

Add

ison
Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Multi-Dimensional Arrays

= C++ allows arrays with multiple index values

= char page [30] [100];
declares an array of characters named page

= page has two index values:
The first ranges from 0O to 29
The second ranges from O to 99

= Each index In enclosed in its own brackets

= Page can be visualized as an array of
30 rows and 100 columns

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 28

Index Values of page

= The indexed variables for array page are
page[0][0], page[O][1], ..., page[0][99]
page[1][0], page[1][1], ..., page[1][99]

pagét29][0], page[29][1], ... , page[29][99]

= page Is actually an array of size 30
= page's base type is an array of 100 characters

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 29

Multidimensional Array Parameters

= Recall that the size of an array Is not needed
when declaring a formal parameter:
void display _line(const char a[], int size);

= The base type of a multi-dimensional array must
be completely specified in the parameter
declaration

= void display page(const char page][| [100],
Int size_dimension_1);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 30

Program Example:
Grading Program

s Grade records for a class can be stored in a
two-dimensional array

= For a class with 4 students and 3 quizzes the
array could be declared as

Int gradel[4][3];
« The first array index refers to the number of a
student

= The second array index refers to a quiz number

= Since student and quiz numbers start with one,
we subtract one to obtain the correct index

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 31

Grading Program:
average scores

= The grading program uses one-dimensional

arrays to store...

= Each student's average score

= Each quiz's average score

= The functions that calculate these averages

use global constants for the size of the arrays

= This was done because
the functions seem to be
particular to this program

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Dis

D

ay 7.17 (1-3)

Dis

D

ay 7.18

Dis

D

ay 7.19

Slide 7- 32

Section 7.5 Conclusion
= Canyou

= Write code that will fill the array a(declared
below) with numbers typed at the keyboard?
The numbers will be input fiver per line,
on four lines.

Int a[4][5];

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 33

e e o :%,

Program Using an Array

//Reads in 5 scores and shows how much each
//score differs from the highest score.
#include <iostreams>

int main()

{

using namespace std;
int i, score[5], max;

cout << "Enter 5 scores:\n";
cin >> score[0];
max = score[0];
for (i =1; i <55 i++)
{

cin >> score[i];

if (score[i] > max)

max = scorel[i];
//max is the largest of the values score[0],..., score[i].

}

cout << "The highest score is
<< "The scores and their\n"
<< "differences from the highest are:\n";
for (i =0; i < 5; i++)
cout << score[i] << " off by "
<< (max - score[i]) << endl;

<< max << endl

return 0;

}
Sample Dialogue

Enter 5 scores:

592106

The highest score is 10

The scores and their

differences from the highest are:
5 off by 5

9 off by 1

2 off by 8

10 off by O

6 off by 4

.I-An..-Array i.n..Ml.én.io.':y.. e e e e el el e e e

address of a[0]

T~

On this computer each
indexed variable uses

2 bytes, so a[3] begins
2 X3 = 6 bytes after

the start of a[0]. \

There is no indexed
variable a[6], but if

there were one, it \<

would be here.

There is no indexed
variable a[7], but if
there were one, it
would be here.

int a[6];

A

VVVVVVY

alo]
a[1]
al2]
a[3]
a[4]

al[5]

some variable
named stuff
some variable
named more_stuff

Indexed Variable as an Argument

//ITlustrates the use of an indexed variable as an argument.
//Adds 5 to each employee’s allowed number of vacation days.
#include <iostream>

const int NUMBER_OF_EMPLOYEES = 3;

int adjust_days(int old_days);
//Returns old_days plus 5.

int main()

{
using namespace std;
int vacation[NUMBER_OF_EMPLOYEES], number;
cout << "Enter allowed vacation days for employees 1"
<< " through " << NUMBER_OF_EMPLOYEES << ":\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cin >> vacation[number-1];
for (number = 0; number < NUMBER_OF_EMPLOYEES; number++)
vacation[number] = adjust_days(vacation[number]);
cout << "The revised number of vacation days are:\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cout << "Employee number " << number
<< " vacation days = " << vacation[number-1] << endl;
return 0;
}
int adjust_days(int old_days)
{
return (old_days + 5);
}

Sample Dialogue

Enter allowed vacation days for employees 1 through 3:
10 205

The revised number of vacation days are:

Employee number 1 vacation days = 15

Employee number 2 vacation days = 25

Employee number 3 vacation days = 10

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Display 7.3

< Back

Next>

Slide 7- 37

Function with an Array Parameter

Function Declaration

void fill_up(int all, int size);

//Precondition: size is the declared size of the array a.
//The user will type in size integers.

//Postcondition: The array a is filled with size integers
//from the keyboard.

Function Definition

//Uses iostream:
void fill_up(int all, int size)

{

using namespace std;

cout << "Enter " << size << " numbers:\n";

for (int i = 0; 1 < size; i++)

cin >> alil;

size--;

cout << "The last array index used is " << size << endl;
}

Outline of the Graph Program D |S p l ay 7 . 5

//Reads data and displays a bar graph showing productivity for each plant.
#include <iostream>

o <Back Next>

void input_data(int a[], int last_plant_number);

//Precondition: last_plant_number is the declared size of the array a.
//Postcondition: For plant_number = 1 through Tlast_plant_number:
//a[plant_number-1] equals the total production for plant number plant_number.

void scale(int a[], int size);

//Precondition: a[0] through a[size-1] each has a nonnegative value.
//Postcondition: a[i] has been changed to the number of 1000s (rounded to

//an integer) that were originally in a[i], for all i such that 0 <= i <= size-1.

void graph(const int asterisk_count[], int last_plant_number);

//Precondition: asterisk_count[0] through asterisk_count[last_plant_number-1]
//have nonnegative values.

//Postcondition: A bar graph has been displayed saying that plant

//number N has produced asterisk_count[N-1] 1000s of units, for each N such that
//1 <= N <= last_plant_number

int main()

{

using namespace std;
int production[NUMBER_OF_PLANTS];

cout << "This program displays a graph showing\n"
<< "production for each plant in the company.\n";

input_data(production, NUMBER_OF_PLANTS);
scale(production, NUMBER_OF_PLANTS);
graph(production, NUMBER_OF_PLANTS);

return 0;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 39

Test of Function input_data (part 1 of 3) D IS p I ay 7 % 6 (1/ 3)

//Tests the function input_data.

#include <jostream>

const int NUMBER_OF_PLANTS = 4; BaCk NeXt
void input_data(int a[], int last_plant_number);

//Precondition: last_plant_number is the declared size of the array a.

//Postcondition: For plant_number = 1 through last_plant_number:
//alplant_number-1] equals the total production for plant number plant_number.

void get_total(int& sum);
//Reads nonnegative integers from the keyboard and
//places their total in sum.

int main()

{
using namespace std;
int production[NUMBER_OF_PLANTS];
char ans;

do
{
input_data(production, NUMBER_OF_PLANTS);
cout << endl
<< "Total production for each”
<< " of plants 1 through 4:\n";
for (int number = 1; number <= NUMBER_OF_PLANTS; number++)
cout << production[number - 1] << " ";

cout << endl
<< "Test Again?(Type y or n and Return): ";
cin >> ans;
while ((ans !'= 'N’) && (ans != 'n’));

cout << endl;

return 0;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 40

Test of Function input_data (part 2 of 3) D IS p I ay 7 : 6 (2/ 3)

//Uses iostream:
void input_data(int a[], int last_plant_number)
{ < Back Next

using namespace std;
for (int plant_number = 1;
plant_number <= last_plant_number; plant_number++)

{
cout << endl
<< "Enter production data for plant number "
<< plant_number << endl;
get_total(al[plant_number - 1]);
}

//Uses iostream:
void get_total(int& sum)

{
using namespace std;
cout << "Enter number of units produced by each department.\n"
<< "Append a negative number to the end of the Tist.\n";
sum = 0;
int next;
cin >> next;
while (next >= 0)
{
sum = sum + next;
cin >> next;
}
cout << "Total = " << sum << endl;
}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-41

Test of Function input_data (part 3 of 3)

Sample Dialogue

Enter production data for plant number 1

Enter number of units produced by each department.
Append a negative number to the end of the 1ist.
123-1

Total = 6

Enter production data for plant number 2

Enter number of units produced by each department.
Append a negative number to the end of the 1ist.
023-1

Total = 5

Enter production data for plant number 3

Enter number of units produced by each department.
Append a negative number to the end of the 1ist.

2 -1

Total = 2

Enter production data for plant number 4

Enter number of units produced by each department.
Append a negative number to the end of the list.
-1

Total = 0

Total production for each of plants 1 through 4:
6520
Test Again?(Type y or n and Return): n

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Display 7.6 (3/3)

<:Back

Next

Slide 7- 42

The Function scale (part T of 2)

//Demonstration program for the function scale.
#include <iostream>
#include <cmath>

void scale(int a[], int size);

//Precondition: a[0] through a[size-1] each has a nonnegative value.
//Postcondition: a[i] has been changed to the number of 1000s (rounded to

//an integer) that were originally in a[i], for all i such that 0 <= i <= size-1.

int round(double number);
//Precondition: number >= 0.

//Returns number rounded to the nearest integer.

int main()

{
using namespace std;
int some_array[4], index;
cout << "Enter 4 numbers to scale: ";
for (index = 0; index < 4; index++)
cin >> some_array[index];
scale(some_array, 4);
cout << "Values scaled to the number of 1000s are: ";
for (index = 0; index < 4; index++)
cout << some_array[index] << " ";
cout << endl;
return Q;
}

void scale(int a[], int size)
{
for (int index = 0; index < size; index++)
a[index] = round(a[index]/1000.0);

Display 7.7

(2/2) (Back| [Next)

The Function scale (part 2 of 2)

//Uses cmath:
int round(double number)

{

using namespace std;
return static_cast<int>(floor(number + 0.5));

}

Sample Dialogue

Enter 4 numbers to scale: 2600 999 465 3501
Values scaled to the number of 1000s are: 3 1 0 4

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 44

Display 7.8
(1/ 4) <Back Next

DISPLAY 7.8 Production Graph Program (part 1 of 4)

1 //Reads data and displays a bar graph showing productivity for each plant.

2 #include <iostream>

3 #include <cmath>

4 const int NUMBER_OF_PLANTS = 4;

5 wvoid input_data(int a[], int last_plant_number);

6 //Precondition: last_plant_number 1is the declared size of the array a.

7 //Postcondition: For plant_number = 1 through last_plant_number:

8 //alplant_number— 1] equals the total production for plant number plant_number.
9 void scale(int al[], int size);
10 //Precondition: a[0@] through a[size— 1] each has a nonnegative value.
11 //Postcondition: a[i] has been changed to the number of 1000s (rounded to
12 //an integer) that were originally in afi], for all i such that @ <=1 <= size—1.
13 void graph(const int asterisk_count[], int last_plant_number);
14 //Precondition: asterisk_count[@] through asterisk_count[last_plant_number— 1]
15 //have nonnegative values.
16 //Postcondition: A bar graph has been displayed saying that plant
17 //number N has produced asterisk_count[N— 1] 1000s of units, for each N such that
18 //1 <= N <= last_plant_number
19 void get_total(int& sum);
20 //Reads nonnegative integers from the keyboard and
21 //places their total in sum.

(continued)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 45

DISPLAY 7.8 Production Graph Program (part 2 of 4)

22 int round(double number);
23 //Precondition: number >= 0.
24 //Returns number rounded to the nearest integer.

25 void print_asterisks(int n);
26 //Prints n asterisks to the screen.

27 int main()

28 {

29 using namespace std;

30 int production[NUMBER_OF_PLANTS];

31 cout << "This program displays a graph showing\n"

32 << "production for each plant in the company.\n";
33 input_data(production, NUMBER_OF_PLANTS);

34 scale(production, NUMBER_OF_PLANTS);

35 graph(production, NUMBER_OF_PLANTS);

36 return 0;

37 }

38 //Uses iostream:
39 wvoid input_data(int a[], int last_plant_number)

<The rest of the definition of input_data is given in Display 7.6.>

40 //Uses iostream:
41 wvoid get_total(int& sum)

<The rest of the definition of get_total is given in Display 7.6.>
42 void scale(int a[], int size)
<The rest of the definition of scale is given in Display 7.7.>

43 //lUses cmath:
44 int round(double number)

<The rest of the definition of round is given in Display 7.7.>
45 //Uses iostream:
46 void graph(const int asterisk_count[], int last_plant_number)

47 1

48 using namespace std;

49 cout << "\nUnits produced in thousands of units:\n";
50 for (int plant_number = 1;

51 plant_number <= last_plant_number; plant_number++)
52 {

53 cout << "Plant #" << plant_number << " "

54 print_asterisks(asterisk_count[plant_number - 1]);
55 cout << endl;

56 }

57 1}

(continued)

Z:SPLAY 7.8 Production Graph Program (part 3 of 4) D I S p I ay 7 - 8 (3/4)

//Uses iostream:
59 void print_asterisks(int n)

60 {

61 using namespace std;

62 for (int count = 1; count <= n; count++)

63 cout << "*"; BaCk Next
64 }

Sample Dialogue

This program displays a graph showing
production for each plant in the company.

Enter production data for plant number 1

Enter number of units produced by each department.
Append a negative number to the end of the list.
2000 3000 1000 -1

Total = 6000

Enter production data for plant number 2

Enter number of units produced by each department.
Append a negative number to the end of the list.
2050 3002 1360 -1

Total = 6352

Enter production data for plant number 3

Enter number of units produced by each department.
Append a negative number to the end of the list.
5000 4020 500 4348 -1

Total = 13868

Enter production data for plant number 3

Enter number of units produced by each department.
Append a negative number to the end of the list.
5000 4020 500 4348 -1

Total = 13868

Enter production data for plant number 4

Enter number of units produced by each department.
Append a negative number to the end of the list.
2507 6050 1809 -1

Total = 10366

(continued)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 47

Display 7.8

(414) (Back] [Nexd)

DISPLAY 7.8 Production Graph Program (part 4 of 4)

Units produced in thousands of units:
Plant #1 ¥k
Plant #2 *¥%*%%%%

Plant #3 #F#fdddddddidtd

P'l_ant F4 FhFhwkwkrk

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 48

Display 7.9 (1/3)

//Shows the difference between each of a 1ist of golf scores and their average.
#include <iostream>

const int MAX_NUMBER_SCORES = 10;
void fill_array(int a[], int size, int& number_used); Ba.Ck NEXt

//Precondition: size is the declared size of the array a.
//Postcondition: number_used is the number of values stored in a.
//a[0] through a[number_used-1] have been filled with
//nonnegative integers read from the keyboard.

double compute_average(const int a[], int number used);
//Precondition: a[0] through a[number_used-1] have values; number_used > 0.
//Returns the average of numbers a[0] through a[number_used-1].

void show_difference(const int a[], int number_used);

//Precondition: The first number_used indexed variables of a have values.
//Postcondition: Gives screen output showing how much each of the first
//number_used elements of a differs from their average.

int main()

{
using namespace std;
int score[MAX_NUMBER_SCORES], number used;
cout << "This program reads golf scores and shows\n"
<< "how much each differs from the average.\n";
cout << "Enter golf scores:\n";
fill_array(score, MAX_NUMBER_SCORES, number_used);
show_difference(score, number_used);
return 0;
1

//Uses iostream:
void fill_array(int a[], int size, 1nt& number_used)
{
using namespace std;
cout << "Enter up to " << size << " nonnegative whole numbers.\n"
<< "Mark the end of the 1list with a negative number.\n";

" "

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 49

Partially Filled Array (parf 2 of 3)

3

int next, index = 0;
cin »>> next;
while ((next >= 0) && (index < size))

{
a[index] = next;
index++;
cin >> next;

}

number_used = index;

double compute_average(const int a[], int number_used)

{

}

double total = 0;

for (int index = 0; index < number_used; index++)
total = total + a[index];

if (number_used > 0)

{
return (total/number_used);
}
else
{
using namespace std;
cout << "ERROR: number of elements is 0 in compute_average.\n"
<< "compute_average returns 0.\n";
return 0;
}

void show_difference(const int a[], int number_used)

{

using namespace std;
double average = compute_average(a, number_used);
cout << "Average of the " << number_used

<< " scores = " << average << endl

<< "The scores are:\n";
for (int index = 0; index < number_used; index++)
cout << afindex] << " differs from average by "

<< (a[index] - average) << endl;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Display 7.9 (2/3)

< Back

Next

Slide 7- 50

Display 7.9

(3/3) (Back] [Next>

Partially Filled Array (part 3 of 3)

Sample Dialogue

This program reads golf scores and shows
how much each differs from the average.
Enter golf scores:

Enter up to 10 nonnegative whole numbers.
Mark the end of the 1list with a negative number.
69 74 68 -1

Average of the 3 scores = 70.3333

The scores are:

69 differs from average by -1.33333

74 differs from average by 3.66667

68 differs from average by -2.33333

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-51

Searching an Array (part 1 of 2)

//Searches a partially filled array of nonnegative integers.
#include <iostream>
const int DECLARED_SIZE = 20;

void fill_array(int a[], int size, int& number_used);
//Precondition: size is the declared size of the array a.
//Postcondition: number_used is the number of values stored in a.
//af0] through a[number_used-1] have been filled with
//nonnegative integers read from the keyboard.

int search(const int a[], int number_used, int target);
//Precondition: number_used is <= the declared size of a.
//Also, a[0] through a[number _used -1] have values.
//Returns the first index such that a[index] == target,
//provided there is such an index; otherwise, returns -1.

int main()
{
using namespace std;
int arr[DECLARED_SIZE], Tist_size, target;

fi11_array(arr, DECLARED_SIZE, 1ist_size);

char ans;
int result;
do

{

cout << "Enter a number to search for: ";
cin >> target;

result = search(arr, 1list_size, target);
if (result == -1)
cout << target <<
else
cout << target << " is stored in array position
<< result << endl
<< "(Remember: The first position is 0.)\n";

is not on the 1ist.\n";

cout << "Search again?(y/n followed by Return): ";
cin >> ans;
Iwhile ((ans != 'n’) & (ans != 'N’));

cout << "End of program.\n";
return 0;

Searching an Array (part 2 of 2)

//Uses iostream:

void fill_array(int a[], int size, int& number_used)
<The rest of the definition of fi11_array is given in Display 10.9.>

int search(const int a[], int number_used, int target)

{

int index = 0;
bool found = false;
while ((!found) && (index < number_used))
if (target == a[index])
found = true;
else
index++;

if (found)

return index;
else

return -1;

}

Sample Dialogue

Enter up to 20 nonnegative whole numbers.
Mark the end of the list with a negative number.
10 20 30 40 50 60 70 80 -1

Enter a number to search for: 10

10 is stored in array position 0
(Remember: The first position is 0.)
Search again?(y/n followed by Return):y
Enter a number to search for: 40

40 1is stored in array position 3
(Remember: The first position is 0.)
Search again?(y/n followed by Return):y
Enter a number to search for: 42

42 1is not on the Tist.

Search again?(y/n followed by Return): n
End of program.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Display 7.10 (2/2)

< Back

Next>

Slide 7- 53

.....................

Selection Sort

al0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

8 6 10 2 16 4 18 | 14 | 12 | 20

Ve RN
8 6 10 2 16 4 18 | 14 | 12 | 20
\ _/
2 6 10 8 16 4 18 14 12 20

- RN

2 6 10 8 16 4 18 14 12 20
\ /
2 4 10 8 16 6 18 14 12 20

DISPLAY 7.12 Sorting an Array (part 1 of 2) D = I 7 1 2 1/2
//Tests the procedure sort. IS p ay .

1

2 #include <iostream>

3 void fill_array(int a[], int size, int& number_used);

4 //Precondition: size is the declared size of the array a.

5 //Postcondition: number_used is the number of values stored in a. N t
6 //a[@] through afnumber_used — 1] have been filled with aC eX
7 //nonnegative integers read from the keyboard.

8 wvoid sort(int a[], int number_used);

9 //Precondition: number_used <= declared size of the array a.

10 //The array elements a[@] through a[number_used — 1] have values.

11 //Postcondition: The values of a[0] through alnumber_used — 1] have
12 //been rearranged so that a[0] <= a[l] <= ... <= a[number_used — 1].
13 void swap_values(int& vl, int& v2);

14 //Interchanges the values of vl and vZ2.

15 int index_of_smallest(const int a[], int start_index, int number_used);
16 //Precondition: 0 <= start_index < number_used. Referenced array elements have
17 //values.

18 //Returns the index i such that a[i] is the smallest of the values

19 //a[start_index], afstart_index + 1], ..., al[number_used — 1].

20 int main()

21 {

22 using namespace std;

23 cout << "This program sorts numbers from lowest to highest.\n";

24 int sample_array[10], number_used;

25 fill_array(sample_array, 10, number_used);

26 sort(sample_array, number_used);

27 cout << "In sorted order the numbers are:\n";

28 for (int index = 0; index < number_used; index++)

29 cout << sample_array[index] << " ";

30 cout << endl;

31 return 0;

32}

33 //Uses iostream:

34 void fill_array(int a[], int size, int& number_used)

35 void sort(int a[], int number_used)

36 {

37 int index_of_next_smallest;

<The rest of the definition of fill_array is given in Display 7.9.>

(continued)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 55

DISPLAY 7.12 Sorting an Array (part 2 of 2)

e e - e R e

38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64

for (int index = 0; index < number_used — 1; index++)
{//Place the correct value in a[index]:
index_of_next_smallest =
index_of_smallest(a, index, number_used);
swap_values(a[index], a[index_of_next_smallest]);
//af@] <= a[l] <=...<= a[index] are the smallest of the original array
//elements. The rest of the elements are in the remaining positions.

}
}
void swap_values(int& v1, int& v2)
{
int temp;
temp = vi;
vl = vZ;
v2 = temp;
}

int index_of_smallest(const int a[], int start_index, int number_used)

int min = a[start_index],
index_of_min = start_index;

for (int index = start_index + 1; index < number_used; index++)
if (a[index] < min)

min = a[index];

index_of_min = index;

//min is the smallest of a[start_index] through a[index]
}

return index_of_min;

Sample Dialogue

This program sorts numbers from lowest to highest.
Enter up to 10 nonnegative whole numbers.

Mark the end of the list with a negative number.
80 30 50 70 60 90 20 30 40 -1

In sorted order the numbers are:

20 30 30 40 50 60 70 80 90

Display 7.13 (1/3)

Two-Dimensional Array (part 1 of 3)
//Reads quiz scores for each student into the two-dimensional array grade (but the input BaCk N eXt
//code 1s not shown in this display). Computes the average score for each student and
//the average score for each quiz. Displays the quiz scores and the averages.
#include <iostream-

#include <iomanip>
const int NUMBER_STUDENTS = 4, NUMBER_QUIZZES = 3;

void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_ave[]);
//Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES

//are the dimensions of the array grade. Each of the indexed variables
//grade[st_num-1, quiz_num-1] contains the score for student st_num on quiz quiz_num.
//Postcondition: Each st_ave[st_num-1] contains the average for student number stu_num.

void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double quiz_ave[]);
//Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES

//are the dimensions of the array grade. Each of the indexed variables
//grade[st_num-1, quiz_num-1] contains the score for student st_num on quiz quiz_num.
//Postcondition: Each quiz_ave[quiz_num-1] contains the average for quiz number
//quiz_num.

void display(const int grade[][NUMBER_QUIZZEST,

const double st_ave[], const double quiz_ave[]);
//Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES are the
//dimensions of the array grade. Each of the indexed variables grade[st_num-1,
//quiz_num-1] contains the score for student st_num on quiz quiz_num. Each
//st_ave[st_num-1] contains the average for student stu_num. Each quiz_ave[quiz_num-1]
//contains the average for quiz number quiz_num.
//Postcondition: All the data in grade, st_ave, and quiz_ave has been output.

int main()
{
using namespace std;
int grade[NUMBER_STUDENTS] [NUMBER_QUIZZES] ;
double st_ave[NUMBER_STUDENTS];
double quiz_ave[NUMBER_QUIZZES];

<The code for filling the array grade goes here, but is not shown.>

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 57

Two-Di

mensional Array (part 2 of 3)

compute_st_ave(grade, st_ave);
compute_quiz_ave(grade, quiz_ave);
display(grade, st_ave, quiz_ave);
return 0;

void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_avel[])

{
for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)

{//Process one st_num:
double sum = 0;
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
sum = sum + grade[st_num-1][quiz_num-1];
//sum contains the sum of the quiz scores for student number st_num.
st_ave[st_num-1] = sum/NUMBER_QUIZZES;
//Average for student st_num is the value of st_ave[st_num-1]

}

void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double quiz_avel])
{
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
{//Process one quiz (for all students):
double sum = 0;
for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
sum = sum + grade[st_num-1][quiz_num-1];
//sum contains the sum of all student scores on quiz number quiz_num.
quiz_avel[quiz_num-1] = sum/NUMBER_STUDENTS;
//Average for quiz quiz_num is the value of quiz_ave[quiz_num-1]

Two-Dimensional Array (part 3 of 3) D |S p l ay 7 : 13 (3/ 3)

//Uses iostream and iomanip:

void display(const int grade[][NUMBER_QUIZZES],
const doublest_ave[], const double quiz_ave[]) B k N t
{ aC ex

using namespace std;
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(l);

cout << setw(1l0) << "Student"
<< setw(5) << "Ave"
<< setw(15) << "Quizzes\n";
for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
{//Display for one st_num:
cout << setw(10) << st_num
<< setw(5) << st_ave[st_num-1] << " ";
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
cout << setw(5) << grade[st_num-1][quiz_num-1];
cout << endl;

}

cout << "Quiz averages = ";

for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
cout << setw(5) << quiz_ave[quiz_num-1];

cout << endl;

Sample Dialogue

<The dialogue for filling the array grade is not shown.>

Student Ave Quizzes
1 10.0 10 10 10
2 1.0 2 0 1
3 7.7 8 6 9
4 7.3 8 4 10
Quiz averages = 7.0 5.0 7.5

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 59

The Two-Dimensional Array grade

student |
student 2
student 3

student 4

grade[3][0] /s the
grade that student 4
received on quiz 1.

~ ~ o
grade[0] [0] | grade[0][1] | grade[0][2] ——p
grade[1][0] | grade[1][1] | grade[1][2] | ———p»

_| grade[2][0] | garde[2][1] | grade[2][2] | g

_| grade[3]1[0] | grade[3][1] | grade[3][2] | g

l

R

grade[3][1] /s the
grade that student 4

received on quiz 2.

o

grade[3][2] is the
grade that student 4
received on quiz 3.

student 1
student 2
student 3

student 4

quiz_ave

10.0

1.0

7.7

~ ™ oy
& 2 Y
S 0§ 3
| I |
10 | 10 | 10 | g
2 0 1 |
8 | 6 | 9 | _p
8 | 4 | 10 | _p
7.0 | 5. 7.5

quiz_ave[0]

quiz_ave[1]

quiz_ave[2]

7.3

st_ave[0]

st_ave[1l]
st_ave[2]

st_ave[3]

	APS105: Lecture 17
	7.2
	Arrays in Functions
	Arrays as Function Arguments
	Array Parameter Declaration
	Function Calls With Arrays
	Function Call Details
	Array Formal Parameters
	Array Argument Details
	How does the function know how to access the array elements?
	Array Parameter Considerations
	const Modifier
	Using const With Arrays
	Function Calls and const
	const Parameters Example
	Returning An Array
	7.3
	Programming With Arrays
	Partially Filled Arrays
	Constants as Arguments
	Searching Arrays
	The search Function
	Program Example:�Sorting an Array
	Program Example:�The Selection Sort Algorithm
	Program Example:� Sort Algorithm Development
	Section 7.3 Conclusion
	7.4
	Multi-Dimensional Arrays
	Index Values of page
	Multidimensional Array Parameters
	Program Example:�Grading Program
	Grading Program:�average scores
	Section 7.5 Conclusion
	Chapter 7 - End
	Display 7.1�
	Display 7.2
	Display 7.3�
	Display 7.4
	Display 7.5�
	Display 7.6 (1/3)�
	Display 7.6 (2/3)�
	Display 7.6 (3/3)�
	Display 7.7 (1/2)�
	Display 7.7�(2/2)
	Display 7.8 �(1/4)
	Display 7.8 (2/4)�
	Display 7.8 (3/4)�
	Display 7.8 �(4/4)
	Display 7.9 (1/3)�
	Display 7.9 (2/3)�
	Display 7.9�(3/3)
	Display 7.10 (1/2)�
	Display 7.10 (2/2)�
	Display 7.11
	Display 7.12 (1/2)�
	Display 7.12 (2/2)�
	Display 7.13 (1/3)�
	Display 7.13 (2/3)�
	Display 7.13 (3/3)�
	Display 7.14
	Display 7.15

