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Arrays in Functions

= Indexed variables can be arguments to functions
= Example: If a program contains these

declarations:
Int 1, n, a[10];

void my_function(int n);

= Variables a[0] through a[9] are of type int,

making these calls legal:

my_function( a]
my_function( a]
my_function( a]
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Arrays as Function Arguments

= A formal parameter can be for an entire array

= Such a parameter is called an array parameter
= It IS not a call-by-value parameter
= It is not a call-by-reference parameter

= Array parameters behave much like call-by-
reference parameters
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Array Parameter Declaration

= An array parameter is indicated using empty
brackets in the parameter list such as

void fill_up(int a[ |, int size);
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Function Calls With Arrays

= If function fill_up is declared in this way:
void fill_up(int a[ |, int size);

o and array score Is declared this way:
Int score[5], number_of scores;

o fill_up is called in this way:
fill_up(score, number_of scores);

Display 7.4
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Function Call Detalls

= A formal parameter is identified as an array
parameter by the [ |'s with no index expression

void fill_up(int a[ |, int size);

= An array argument does not use the [ ]'s

fill_up(score, number_of_scores);
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Array Formal Parameters

= An array formal parameter is a placeholder for
the argument

= When an array is an argument in a function
call, an action performed on the array
parameter is performed on the array argument

= The values of the indexed variables can be
changed by the function
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Array Argument Detalls

= What does the computer know about an array?

= The base type

= The address of the first iIndexed variable

= The number of iIndexed variables

= What does a function know about an array
argument?

= The base type
= The address of the first indexed variable
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How does the function know how to access
the array elements?

= T0 access element i, the function uses the
formula
= address in memory of element | =
start address of array + | * element size

« Start address of array = address of first element in
array)

=« E.Q.

Score[2] is an indexed variable to the location identified by
the above formula
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Array Parameter Considerations

s Because a function does not know the size of
an array argument...

= The programmer should include a formal
parameter that specifies the size of the array

= The function can process arrays of various
sizes

= Function fill_up from Display 7.4 can be used to fill
an array of any size:

fill_up(score, 5);
fill_up(time, 10);
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const Modifier

= Array parameters allow a function to change the
values stored In the array argument

= If a function should not change the values of the
array argument, use the modifier const

= An array parameter modified with const is a
constant array parameter

Example:
void show the world(const int a[ |, int size);

Slide 7- 12
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Using const With Arrays
= If const is used to modify an array parameter:

= const is used in both the function declaration
and definition to modify the array parameter

=« The compiler will issue an error if you write
code that changes the values stored in the
array parameter
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Function Calls and const

= If a function with a constant array parameter
calls another function using the const array
parameter as an argument...

= The called function must use a constant
array parameter as a placeholder for the array

= The compiler will issue an error if a function is
called that does not have a const array
parameter to accept the array argument
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const Parameters Example

= double compute average(int a[ |, int size);

void show_difference(const int g ], int size)

{

double average = compute_average(a, size);

}

= compute_average has no constant array parameter

= This code generates an error message because
compute average could change the array parameter
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Returning An Array

s Recall that functions can return a value of
type int, double, char, ..., or a class type

= Functions cannot return arrays

= We learn later how to return a pointer to an array
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Programming With Arrays

= The size needed for an array is changeable

= Often varies from one run of a program to
another

= Is often not known when the program is written

= A common solution to the size problem

= Declare the array size to be the largest that
could be needed

= Decide how to deal with partially filled arrays
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Partially Filled Arrays

= When using arrays that are partially filled

= Functions dealing with the array may not need
to know the declared size of the array, only
how many elements are stored in the array

= A parameter, number_used, may be sufficient
to ensure that referenced index values are
legal

= A function such as fill_array in Display 7.9
needs to know the declared size of the array

Display 7.9 (1) | | Display 7.9 (2) | | Display 7.9 (3)
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Constants as Arguments

= When function fill_array (Display 7.9) is called,
MAX_NUMBER_SCORES is used as an
argument

« Can't MAX_NUMBER_SCORES be used
directly without making it an argument?

=« Using MAX_NUMBER_SCORES as an argument
makes it clear that fill_array requires the array's
declared size

=« This makes fill_array easier to be used in other
programs
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Searching Arrays

= A sequential search is one way to search
an array for a given value

= Look at each element from first to last to see If
the target value is equal to any of the array
elements

= The index of the target value can be returned
to Indicate where the value was found in the
array

= A value of -1 can be returned if the value was
not found
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The search Function

= The search function of Display 7.10...

= Uses a while loop to compare array elements
to the target value

= Sets a variable of type bool to true If the target
value is found, ending the loop

= Checks the boolean variable when the loop
ends to see If the target value was found

= Returns the index of the target value if found,
otherwise returns -1

Display 7.10 (1) Display 7.10 (2)
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Program Example:
Sorting an Array

= Sorting a list of values Is very common task
=« Create an alphabetical listing
= Create a list of values in ascending order
=« Create a list of values in descending order
= Many sorting algorithms exist
= Some are very efficient
= Some are easier to understand
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Program Example:
The Selection Sort Algorithm

= When the sort is complete, the elements of the
array are ordered such that

al0] <a[l] < ... <a[number_used -1]
= This leads to an outline of an algorithm:
for (int index = 0; index < number_used,;
Index++)
place the indexth smallest element In
alindex]
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Program Example:
Sort Algorithm Development

= One array Is sufficient to do our sorting
= Search for the smallest value in the array

= Place this value in a[0], and place the value
that was in a|0] in the location where the

smallest was found

» Starting at a[1], find the smallest remaining
value swap it with the value currently in a[1]

= Starting at a[2], continue the process until the
array Is sorted

Display 7.11 | Display 7.12 (1-3)
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Section 7.3 Conclusion
= Canyou

= Write a program that will read up to 10 letters
Into an array and write the letters back to the
screen in the reverse order?

abcd should be output as dcba

Use a period as a sentinel value to mark the
end of input
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Multi-Dimensional Arrays

= C++ allows arrays with multiple index values

= char page [30] [100];
declares an array of characters named page

= page has two index values:
The first ranges from 0O to 29
The second ranges from O to 99

= Each index In enclosed in its own brackets

= Page can be visualized as an array of
30 rows and 100 columns
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Index Values of page

= The indexed variables for array page are
page[0][0], page[O][1], ..., page[0][99]
page[1][0], page[1][1], ..., page[1][99]

pagét29][0], page[29][1], ... , page[29][99]

= page Is actually an array of size 30
= page's base type is an array of 100 characters
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Multidimensional Array Parameters

= Recall that the size of an array Is not needed
when declaring a formal parameter:
void display _line(const char a[ ], int size);

= The base type of a multi-dimensional array must
be completely specified in the parameter
declaration

= void display page(const char page][ | [100],
Int size_dimension_1);
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Program Example:
Grading Program

s Grade records for a class can be stored in a
two-dimensional array

= For a class with 4 students and 3 quizzes the
array could be declared as

Int gradel[4][3];
« The first array index refers to the number of a
student

= The second array index refers to a quiz number

= Since student and quiz numbers start with one,
we subtract one to obtain the correct index
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Grading Program:
average scores

= The grading program uses one-dimensional

arrays to store...

= Each student's average score

= Each quiz's average score

= The functions that calculate these averages

use global constants for the size of the arrays

= This was done because
the functions seem to be
particular to this program
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Section 7.5 Conclusion
= Canyou

= Write code that will fill the array a(declared
below) with numbers typed at the keyboard?
The numbers will be input fiver per line,
on four lines.

Int a[4][5];
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Program Using an Array

//Reads in 5 scores and shows how much each
//score differs from the highest score.
#include <iostreams>

int main()

{

using namespace std;
int i, score[5], max;

cout << "Enter 5 scores:\n";
cin >> score[0];
max = score[0];
for (i =1; i <55 i++)
{

cin >> score[i];

if (score[i] > max)

max = scorel[i];
//max is the largest of the values score[0],..., score[i].

}

cout << "The highest score is
<< "The scores and their\n"
<< "differences from the highest are:\n";
for (i =0; i < 5; i++)
cout << score[i] << " off by "
<< (max - score[i]) << endl;

<< max << endl

return 0;

}
Sample Dialogue

Enter 5 scores:

592106

The highest score is 10

The scores and their

differences from the highest are:
5 off by 5

9 off by 1

2 off by 8

10 off by O

6 off by 4




.I-An..-Array i.n..Ml.én.io.':y.. e e e e el el e e e

address of a[0]

T~

On this computer each
indexed variable uses

2 bytes, so a[3] begins
2 X3 = 6 bytes after

the start of a[0]. \

There is no indexed
variable a[6], but if

there were one, it \<

would be here.

There is no indexed
variable a[7], but if
there were one, it
would be here.

int a[6];

A

VVVVVVY

alo]
a[1]
al2]
a[3]
a[4]

al[5]

some variable
named stuff
some variable
named more_stuff




Indexed Variable as an Argument

//ITlustrates the use of an indexed variable as an argument.
//Adds 5 to each employee’s allowed number of vacation days.
#include <iostream>

const int NUMBER_OF_EMPLOYEES = 3;

int adjust_days(int old_days);
//Returns old_days plus 5.

int main()

{
using namespace std;
int vacation[NUMBER_OF_EMPLOYEES], number;
cout << "Enter allowed vacation days for employees 1"
<< " through " << NUMBER_OF_EMPLOYEES << ":\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cin >> vacation[number-1];
for (number = 0; number < NUMBER_OF_EMPLOYEES; number++)
vacation[number] = adjust_days(vacation[number]);
cout << "The revised number of vacation days are:\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cout << "Employee number " << number
<< " vacation days = " << vacation[number-1] << endl;
return 0;
}
int adjust_days(int old_days)
{
return (old_days + 5);
}

Sample Dialogue

Enter allowed vacation days for employees 1 through 3:
10 205

The revised number of vacation days are:

Employee number 1 vacation days = 15

Employee number 2 vacation days = 25

Employee number 3 vacation days = 10
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Function with an Array Parameter

Function Declaration

void fill_up(int all, int size);

//Precondition: size is the declared size of the array a.
//The user will type in size integers.

//Postcondition: The array a is filled with size integers
//from the keyboard.

Function Definition

//Uses iostream:
void fill_up(int all, int size)

{

using namespace std;

cout << "Enter " << size << " numbers:\n";

for (int i = 0; 1 < size; i++)

cin >> alil;

size--;

cout << "The last array index used is " << size << endl;
}




Outline of the Graph Program D |S p l ay 7 . 5

//Reads data and displays a bar graph showing productivity for each plant.
#include <iostream>

o <Back Next>

void input_data(int a[], int last_plant_number);

//Precondition: last_plant_number is the declared size of the array a.
//Postcondition: For plant_number = 1 through Tlast_plant_number:
//a[plant_number-1] equals the total production for plant number plant_number.

void scale(int a[], int size);

//Precondition: a[0] through a[size-1] each has a nonnegative value.
//Postcondition: a[i] has been changed to the number of 1000s (rounded to

//an integer) that were originally in a[i], for all i such that 0 <= i <= size-1.

void graph(const int asterisk_count[], int last_plant_number);

//Precondition: asterisk_count[0] through asterisk_count[last_plant_number-1]
//have nonnegative values.

//Postcondition: A bar graph has been displayed saying that plant

//number N has produced asterisk_count[N-1] 1000s of units, for each N such that
//1 <= N <= last_plant_number

int main()

{

using namespace std;
int production[NUMBER_OF_PLANTS];

cout << "This program displays a graph showing\n"
<< "production for each plant in the company.\n";

input_data(production, NUMBER_OF_PLANTS);
scale(production, NUMBER_OF_PLANTS);
graph(production, NUMBER_OF_PLANTS);

return 0;
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Test of Function input_data (part 1 of 3) D IS p I ay 7 % 6 (1/ 3)

//Tests the function input_data.

#include <jostream>

const int NUMBER_OF_PLANTS = 4; BaCk NeXt
void input_data(int a[], int last_plant_number);

//Precondition: last_plant_number is the declared size of the array a.

//Postcondition: For plant_number = 1 through last_plant_number:
//alplant_number-1] equals the total production for plant number plant_number.

void get_total(int& sum);
//Reads nonnegative integers from the keyboard and
//places their total in sum.

int main()

{
using namespace std;
int production[NUMBER_OF_PLANTS];
char ans;

do
{
input_data(production, NUMBER_OF_PLANTS);
cout << endl
<< "Total production for each”
<< " of plants 1 through 4:\n";
for (int number = 1; number <= NUMBER_OF_PLANTS; number++)
cout << production[number - 1] << " ";

cout << endl
<< "Test Again?(Type y or n and Return): ";
cin >> ans;
while ( (ans !'= 'N’) && (ans != 'n’) );

cout << endl;

return 0;
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Test of Function input_data (part 2 of 3) D IS p I ay 7 : 6 (2/ 3)

//Uses iostream:
void input_data(int a[], int last_plant_number)
{ < Back Next

using namespace std;
for (int plant_number = 1;
plant_number <= last_plant_number; plant_number++)

{
cout << endl
<< "Enter production data for plant number "
<< plant_number << endl;
get_total(al[plant_number - 1]);
}

//Uses iostream:
void get_total(int& sum)

{
using namespace std;
cout << "Enter number of units produced by each department.\n"
<< "Append a negative number to the end of the Tist.\n";
sum = 0;
int next;
cin >> next;
while (next >= 0)
{
sum = sum + next;
cin >> next;
}
cout << "Total = " << sum << endl;
}
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Test of Function input_data (part 3 of 3)

Sample Dialogue

Enter production data for plant number 1

Enter number of units produced by each department.
Append a negative number to the end of the 1ist.
123-1

Total = 6

Enter production data for plant number 2

Enter number of units produced by each department.
Append a negative number to the end of the 1ist.
023-1

Total = 5

Enter production data for plant number 3

Enter number of units produced by each department.
Append a negative number to the end of the 1ist.

2 -1

Total = 2

Enter production data for plant number 4

Enter number of units produced by each department.
Append a negative number to the end of the list.
-1

Total = 0

Total production for each of plants 1 through 4:
6520
Test Again?(Type y or n and Return): n
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The Function scale (part T of 2)

//Demonstration program for the function scale.
#include <iostream>
#include <cmath>

void scale(int a[], int size);

//Precondition: a[0] through a[size-1] each has a nonnegative value.
//Postcondition: a[i] has been changed to the number of 1000s (rounded to

//an integer) that were originally in a[i], for all i such that 0 <= i <= size-1.

int round(double number);
//Precondition: number >= 0.

//Returns number rounded to the nearest integer.

int main()

{
using namespace std;
int some_array[4], index;
cout << "Enter 4 numbers to scale: ";
for (index = 0; index < 4; index++)
cin >> some_array[index];
scale(some_array, 4);
cout << "Values scaled to the number of 1000s are: ";
for (index = 0; index < 4; index++)
cout << some_array[index] << " ";
cout << endl;
return Q;
}

void scale(int a[], int size)
{
for (int index = 0; index < size; index++)
a[index] = round(a[index]/1000.0);




Display 7.7

(2/2) (Back| [Next)

The Function scale (part 2 of 2)

//Uses cmath:
int round(double number)

{

using namespace std;
return static_cast<int>(floor(number + 0.5));

}

Sample Dialogue

Enter 4 numbers to scale: 2600 999 465 3501
Values scaled to the number of 1000s are: 3 1 0 4
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Display 7.8
(1/ 4) <Back Next

DISPLAY 7.8 Production Graph Program (part 1 of 4)

1 //Reads data and displays a bar graph showing productivity for each plant.

2 #include <iostream>

3 #include <cmath>

4 const int NUMBER_OF_PLANTS = 4;

5 wvoid input_data(int a[], int last_plant_number);

6 //Precondition: last_plant_number 1is the declared size of the array a.

7 //Postcondition: For plant_number = 1 through last_plant_number:

8 //alplant_number— 1] equals the total production for plant number plant_number.
9 void scale(int al[], int size);
10 //Precondition: a[0@] through a[size— 1] each has a nonnegative value.
11 //Postcondition: a[i] has been changed to the number of 1000s (rounded to
12 //an integer) that were originally in afi], for all i such that @ <=1 <= size—1.
13 void graph(const int asterisk_count[], int last_plant_number);
14 //Precondition: asterisk_count[@] through asterisk_count[last_plant_number— 1]
15 //have nonnegative values.
16 //Postcondition: A bar graph has been displayed saying that plant
17  //number N has produced asterisk_count[N— 1] 1000s of units, for each N such that
18 //1 <= N <= last_plant_number
19 void get_total(int& sum);
20 //Reads nonnegative integers from the keyboard and
21 //places their total in sum.

(continued)
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DISPLAY 7.8 Production Graph Program (part 2 of 4)

22 int round(double number);
23  //Precondition: number >= 0.
24  //Returns number rounded to the nearest integer.

25 void print_asterisks(int n);
26 //Prints n asterisks to the screen.

27 int main( )

28 {

29 using namespace std;

30 int production[NUMBER_OF_PLANTS];

31 cout << "This program displays a graph showing\n"

32 << "production for each plant in the company.\n";
33 input_data(production, NUMBER_OF_PLANTS);

34 scale(production, NUMBER_OF_PLANTS);

35 graph(production, NUMBER_OF_PLANTS);

36 return 0;

37 }

38 //Uses iostream:
39 wvoid input_data(int a[], int last_plant_number)

<The rest of the definition of input_data is given in Display 7.6.>

40 //Uses iostream:
41 wvoid get_total(int& sum)

<The rest of the definition of get_total is given in Display 7.6.>
42 void scale(int a[], int size)
<The rest of the definition of scale is given in Display 7.7.>

43  //lUses cmath:
44  int round(double number)

<The rest of the definition of round is given in Display 7.7.>
45 //Uses iostream:
46 void graph(const int asterisk_count[], int last_plant_number)

47 1

48 using namespace std;

49 cout << "\nUnits produced in thousands of units:\n";
50 for (int plant_number = 1;

51 plant_number <= last_plant_number; plant_number++)
52 {

53 cout << "Plant #" << plant_number << " "

54 print_asterisks(asterisk_count[plant_number - 1]);
55 cout << endl;

56 }

57 1}

(continued)




Z:SPLAY 7.8 Production Graph Program (part 3 of 4) D I S p I ay 7 - 8 (3/4)

//Uses iostream:
59 void print_asterisks(int n)

60 {

61 using namespace std;

62 for (int count = 1; count <= n; count++)

63 cout << "*"; BaCk Next
64 }

Sample Dialogue

This program displays a graph showing
production for each plant in the company.

Enter production data for plant number 1

Enter number of units produced by each department.
Append a negative number to the end of the list.
2000 3000 1000 -1

Total = 6000

Enter production data for plant number 2

Enter number of units produced by each department.
Append a negative number to the end of the list.
2050 3002 1360 -1

Total = 6352

Enter production data for plant number 3

Enter number of units produced by each department.
Append a negative number to the end of the list.
5000 4020 500 4348 -1

Total = 13868

Enter production data for plant number 3

Enter number of units produced by each department.
Append a negative number to the end of the list.
5000 4020 500 4348 -1

Total = 13868

Enter production data for plant number 4

Enter number of units produced by each department.
Append a negative number to the end of the list.
2507 6050 1809 -1

Total = 10366

(continued)
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Display 7.8

(414) (Back] [Nexd)

DISPLAY 7.8 Production Graph Program (part 4 of 4)

Units produced in thousands of units:
Plant #1 ¥k
Plant #2 *¥%*%%%%

Plant #3 #F#fdddddddidtd

P'l_ant F4 FhFhwkwkrk
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Display 7.9 (1/3)

//Shows the difference between each of a 1ist of golf scores and their average.
#include <iostream>

const int MAX_NUMBER_SCORES = 10;
void fill_array(int a[], int size, int& number_used); Ba.Ck NEXt

//Precondition: size is the declared size of the array a.
//Postcondition: number_used is the number of values stored in a.
//a[0] through a[number_used-1] have been filled with
//nonnegative integers read from the keyboard.

double compute_average(const int a[], int number used);
//Precondition: a[0] through a[number_used-1] have values; number_used > 0.
//Returns the average of numbers a[0] through a[number_used-1].

void show_difference(const int a[], int number_used);

//Precondition: The first number_used indexed variables of a have values.
//Postcondition: Gives screen output showing how much each of the first
//number_used elements of a differs from their average.

int main()

{
using namespace std;
int score[MAX_NUMBER_SCORES], number used;
cout << "This program reads golf scores and shows\n"
<< "how much each differs from the average.\n";
cout << "Enter golf scores:\n";
fill_array(score, MAX_NUMBER_SCORES, number_used);
show_difference(score, number_used);
return 0;
1

//Uses iostream:
void fill_array(int a[], int size, 1nt& number_used)
{
using namespace std;
cout << "Enter up to " << size << " nonnegative whole numbers.\n"
<< "Mark the end of the 1list with a negative number.\n";

" "
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Partially Filled Array (parf 2 of 3)

3

int next, index = 0;
cin »>> next;
while ((next >= 0) && (index < size))

{
a[index] = next;
index++;
cin >> next;

}

number_used = index;

double compute_average(const int a[], int number_used)

{

}

double total = 0;

for (int index = 0; index < number_used; index++)
total = total + a[index];

if (number_used > 0)

{
return (total/number_used);
}
else
{
using namespace std;
cout << "ERROR: number of elements is 0 in compute_average.\n"
<< "compute_average returns 0.\n";
return 0;
}

void show_difference(const int a[], int number_used)

{

using namespace std;
double average = compute_average(a, number_used);
cout << "Average of the " << number_used

<< " scores = " << average << endl

<< "The scores are:\n";
for (int index = 0; index < number_used; index++)
cout << afindex] << " differs from average by "

<< (a[index] - average) << endl;
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Display 7.9

(3/3) (Back] [Next>

Partially Filled Array (part 3 of 3)

Sample Dialogue

This program reads golf scores and shows
how much each differs from the average.
Enter golf scores:

Enter up to 10 nonnegative whole numbers.
Mark the end of the 1list with a negative number.
69 74 68 -1

Average of the 3 scores = 70.3333

The scores are:

69 differs from average by -1.33333

74 differs from average by 3.66667

68 differs from average by -2.33333
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Searching an Array (part 1 of 2)

//Searches a partially filled array of nonnegative integers.
#include <iostream>
const int DECLARED_SIZE = 20;

void fill_array(int a[], int size, int& number_used);
//Precondition: size is the declared size of the array a.
//Postcondition: number_used is the number of values stored in a.
//af0] through a[number_used-1] have been filled with
//nonnegative integers read from the keyboard.

int search(const int a[], int number_used, int target);
//Precondition: number_used is <= the declared size of a.
//Also, a[0] through a[number _used -1] have values.
//Returns the first index such that a[index] == target,
//provided there is such an index; otherwise, returns -1.

int main()
{
using namespace std;
int arr[DECLARED_SIZE], Tist_size, target;

fi11_array(arr, DECLARED_SIZE, 1ist_size);

char ans;
int result;
do

{

cout << "Enter a number to search for: ";
cin >> target;

result = search(arr, 1list_size, target);
if (result == -1)
cout << target <<
else
cout << target << " is stored in array position
<< result << endl
<< "(Remember: The first position is 0.)\n";

is not on the 1ist.\n";

cout << "Search again?(y/n followed by Return): ";
cin >> ans;
Iwhile ((ans != 'n’) & (ans != 'N’));

cout << "End of program.\n";
return 0;




Searching an Array (part 2 of 2)

//Uses iostream:

void fill_array(int a[], int size, int& number_used)
<The rest of the definition of fi11_array is given in Display 10.9.>

int search(const int a[], int number_used, int target)

{

int index = 0;
bool found = false;
while ((!found) && (index < number_used))
if (target == a[index])
found = true;
else
index++;

if (found)

return index;
else

return -1;

}

Sample Dialogue

Enter up to 20 nonnegative whole numbers.
Mark the end of the list with a negative number.
10 20 30 40 50 60 70 80 -1

Enter a number to search for: 10

10 is stored in array position 0
(Remember: The first position is 0.)
Search again?(y/n followed by Return):y
Enter a number to search for: 40

40 1is stored in array position 3
(Remember: The first position is 0.)
Search again?(y/n followed by Return):y
Enter a number to search for: 42

42 1is not on the Tist.

Search again?(y/n followed by Return): n
End of program.
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Selection Sort

al0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

8 6 10 2 16 4 18 | 14 | 12 | 20

Ve RN
8 6 10 2 16 4 18 | 14 | 12 | 20
\ _/
2 6 10 8 16 4 18 14 12 20

- RN

2 6 10 8 16 4 18 14 12 20
\ /
2 4 10 8 16 6 18 14 12 20




DISPLAY 7.12 Sorting an Array (part 1 of 2) D = I 7 1 2 1/2
//Tests the procedure sort. IS p ay .

1

2 #include <iostream>

3 void fill_array(int a[], int size, int& number_used);

4 //Precondition: size is the declared size of the array a.

5 //Postcondition: number_used is the number of values stored in a. N t
6 //a[@] through afnumber_used — 1] have been filled with aC eX
7 //nonnegative integers read from the keyboard.

8 wvoid sort(int a[], int number_used);

9 //Precondition: number_used <= declared size of the array a.

10 //The array elements a[@] through a[number_used — 1] have values.

11 //Postcondition: The values of a[0] through alnumber_used — 1] have
12 //been rearranged so that a[0] <= a[l] <= ... <= a[number_used — 1].
13 void swap_values(int& vl, int& v2);

14 //Interchanges the values of vl and vZ2.

15 int index_of_smallest(const int a[], int start_index, int number_used);
16 //Precondition: 0 <= start_index < number_used. Referenced array elements have
17 //values.

18 //Returns the index i such that a[i] is the smallest of the values

19 //a[start_index], afstart_index + 1], ..., al[number_used — 1].

20  int main( )

21 {

22 using namespace std;

23 cout << "This program sorts numbers from lowest to highest.\n";

24 int sample_array[10], number_used;

25 fill_array(sample_array, 10, number_used);

26 sort(sample_array, number_used);

27 cout << "In sorted order the numbers are:\n";

28 for (int index = 0; index < number_used; index++)

29 cout << sample_array[index] << " ";

30 cout << endl;

31 return 0;

32}

33 //Uses iostream:

34 void fill_array(int a[], int size, int& number_used)

35 void sort(int a[], int number_used)

36 {

37 int index_of_next_smallest;

<The rest of the definition of fill_array is given in Display 7.9.>

(continued)
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DISPLAY 7.12 Sorting an Array (part 2 of 2)

e e - e R e
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40
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45
46
47

48
49
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51
52
53
54
55

56
57
58
59
60
61
62
63
64

for (int index = 0; index < number_used — 1; index++)
{//Place the correct value in a[index]:
index_of_next_smallest =
index_of_smallest(a, index, number_used);
swap_values(a[index], a[index_of_next_smallest]);
//af@] <= a[l] <=...<= a[index] are the smallest of the original array
//elements. The rest of the elements are in the remaining positions.

}
}
void swap_values(int& v1, int& v2)
{
int temp;
temp = vi;
vl = vZ;
v2 = temp;
}

int index_of_smallest(const int a[], int start_index, int number_used)

int min = a[start_index],
index_of_min = start_index;

for (int index = start_index + 1; index < number_used; index++)
if (a[index] < min)

min = a[index];

index_of_min = index;

//min is the smallest of a[start_index] through a[index]
}

return index_of_min;

Sample Dialogue

This program sorts numbers from lowest to highest.
Enter up to 10 nonnegative whole numbers.

Mark the end of the list with a negative number.
80 30 50 70 60 90 20 30 40 -1

In sorted order the numbers are:

20 30 30 40 50 60 70 80 90




Display 7.13 (1/3)

Two-Dimensional Array (part 1 of 3)
//Reads quiz scores for each student into the two-dimensional array grade (but the input BaCk N eXt
//code 1s not shown in this display). Computes the average score for each student and
//the average score for each quiz. Displays the quiz scores and the averages.
#include <iostream-

#include <iomanip>
const int NUMBER_STUDENTS = 4, NUMBER_QUIZZES = 3;

void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_ave[]);
//Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES

//are the dimensions of the array grade. Each of the indexed variables
//grade[st_num-1, quiz_num-1] contains the score for student st_num on quiz quiz_num.
//Postcondition: Each st_ave[st_num-1] contains the average for student number stu_num.

void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double quiz_ave[]);
//Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES

//are the dimensions of the array grade. Each of the indexed variables
//grade[st_num-1, quiz_num-1] contains the score for student st_num on quiz quiz_num.
//Postcondition: Each quiz_ave[quiz_num-1] contains the average for quiz number
//quiz_num.

void display(const int grade[][NUMBER_QUIZZEST,

const double st_ave[], const double quiz_ave[]);
//Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES are the
//dimensions of the array grade. Each of the indexed variables grade[st_num-1,
//quiz_num-1] contains the score for student st_num on quiz quiz_num. Each
//st_ave[st_num-1] contains the average for student stu_num. Each quiz_ave[quiz_num-1]
//contains the average for quiz number quiz_num.
//Postcondition: All the data in grade, st_ave, and quiz_ave has been output.

int main()
{
using namespace std;
int grade[NUMBER_STUDENTS] [NUMBER_QUIZZES] ;
double st_ave[NUMBER_STUDENTS];
double quiz_ave[NUMBER_QUIZZES];

<The code for filling the array grade goes here, but is not shown.>
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Two-Di

mensional Array (part 2 of 3)

compute_st_ave(grade, st_ave);
compute_quiz_ave(grade, quiz_ave);
display(grade, st_ave, quiz_ave);
return 0;

void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_avel[])

{
for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)

{//Process one st_num:
double sum = 0;
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
sum = sum + grade[st_num-1][quiz_num-1];
//sum contains the sum of the quiz scores for student number st_num.
st_ave[st_num-1] = sum/NUMBER_QUIZZES;
//Average for student st_num is the value of st_ave[st_num-1]

}

void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double quiz_avel])
{
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
{//Process one quiz (for all students):
double sum = 0;
for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
sum = sum + grade[st_num-1][quiz_num-1];
//sum contains the sum of all student scores on quiz number quiz_num.
quiz_avel[quiz_num-1] = sum/NUMBER_STUDENTS;
//Average for quiz quiz_num is the value of quiz_ave[quiz_num-1]




Two-Dimensional Array (part 3 of 3) D |S p l ay 7 : 13 (3/ 3)

//Uses iostream and iomanip:

void display(const int grade[][NUMBER_QUIZZES],
const doublest_ave[], const double quiz_ave[]) B k N t
{ aC ex

using namespace std;
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(l);

cout << setw(1l0) << "Student"
<< setw(5) << "Ave"
<< setw(15) << "Quizzes\n";
for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
{//Display for one st_num:
cout << setw(10) << st_num
<< setw(5) << st_ave[st_num-1] << " ";
for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
cout << setw(5) << grade[st_num-1][quiz_num-1];
cout << endl;

}

cout << "Quiz averages = ";

for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
cout << setw(5) << quiz_ave[quiz_num-1];

cout << endl;

Sample Dialogue

<The dialogue for filling the array grade is not shown.>

Student Ave Quizzes
1 10.0 10 10 10
2 1.0 2 0 1
3 7.7 8 6 9
4 7.3 8 4 10
Quiz averages = 7.0 5.0 7.5
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The Two-Dimensional Array grade

student |
student 2
student 3

student 4

grade[3][0] /s the
grade that student 4
received on quiz 1.

~ ~ o
grade[0] [0] | grade[0][1] | grade[0][2] ——p
grade[1][0] | grade[1][1] | grade[1][2] | ———p»

_| grade[2][0] | garde[2][1] | grade[2][2] | g

_| grade[3]1[0] | grade[3][1] | grade[3][2] | g

l

R

grade[3][1] /s the
grade that student 4

received on quiz 2.

o

grade[3][2] is the
grade that student 4
received on quiz 3.




student 1
student 2
student 3

student 4

quiz_ave

10.0

1.0

7.7

~ ™ oy
& 2 Y
S 0§ 3
| I |
10 | 10 | 10 | g
2 0 1 |
8 | 6 | 9 | _p
8 | 4 | 10 | _p
7.0 | 5. 7.5

quiz_ave[0]

quiz_ave[1]

quiz_ave[2]

7.3

st_ave[0]

st_ave[1l]
st_ave[2]

st_ave[3]
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