
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as
supplied by Addison Wesley

APS105: Lectures 18 &19

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 2

How to get user arguments from command line?

#include <iostream>

using namespace std;

int main(int argc, char* argv[])
{

for (int count = 0; count < argc; count ++)
{

cout << "commmand line value "
<< count
<< " : " << argv[count] << endl;

}
return 0;

}

The Operating System
passes the number of
Arguments in argc while the
Arguments are passed in argv

argv is an array, where
by each element in that array
is itself a char array

Compile this program and
try
./a.out 222 111 333
and compare it to
./a.out 222 1 1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 8

Strings

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 4

Overview

8.1 An Array Type for Strings

8.2 The Standard string Class

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.1

An Array Type for Strings

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 6

An Array Type for Strings

 C-strings can be used to represent strings of
characters
 C-strings are stored as arrays of characters
 C-strings use the null character '\0' to end a

string
 The Null character is a single character

 To declare a C-string variable, declare an array
of characters:

char s[11];

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 7

 Declaring a C-string as char s[10] creates space
for only nine characters
 The null character terminator requires one

space
 A C-string variable does not need a size variable

 The null character immediately follows the last
character of the string

 Example: s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7] s[8] s[9]

H i M o m ! \0 ? ?

C-string Details

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 8

C-string Declaration

 To declare a C-string variable, use the syntax:

char Array_name[Maximum_C_String_Size + 1];

 + 1 reserves the additional character needed
by '\0'

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 9

Initializing a C-string

 To initialize a C-string during declaration:
char my_message[20] = "Hi there.";

 The null character '\0' is added for you

 Another alternative:
char short_string[] = "abc";

but not this:
char short_string[] = {'a', 'b', 'c'};

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 10

C-string error

 This attempt to initialize a C-string does not
cause the \0 to be inserted in the array
 char short_string[] = {'a', 'b', 'c'};

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 11

Don't Change '\0'

 Do not to replace the null character when
manipulating indexed variables in a C-string
 If the null character is lost, the array cannot act

like a C-string
 Example: int index = 0;

while (our_string[index] != '\0')
{

our_string[index] = 'X';
index++;

}
 This code depends on finding the null character!

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 12

Safer Processing of C-strings

 The loop on the previous slide depended on
finding the '\0' character
 It would be wiser to use this version in case the

'\0' character had been removed
int index = 0;
while (our_string[index] != '\0'

&& index < SIZE)
{

our_string[index] = 'X';
index++;

}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 13

Assignment With C-strings

 This statement is illegal:

a_string = "Hello";
 This is an assignment statement, not an

initialization
 The assignment operator does not work with

C-strings

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 14

Assignment of C-strings

 A common method to assign a value to a
C-string variable is to use strcpy, defined in
the cstring library
 Example: #include <cstring>

…
char a_string[11];

strcpy (a_string, "Hello");

Places "Hello" followed by the null character in
a_string

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 15

A Problem With strcpy

 strcpy can create problems if not used carefully
 strcpy does not check the declared length of

the first argument

 It is possible for strcpy to write characters
beyond the declared size of the array

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 16

A Solution for strcpy

 Many versions of C++ have a safer version of
strcpy named strncpy
 strncpy uses a third argument representing the

maximum number of characters to copy
 Example: char another_string[10];

strncpy(another_string,
a_string_variable, 9);

This code copies up to 9 characters into
another_string, leaving one space for '\0'

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 17

== Alternative for C-strings

 The = = operator does not work as expected with
C-strings
 The predefined function strcmp is used to

compareC-string variables
 Example: #include <cstring>

…
if (strcmp(c_string1, c_string2))

cout << "Strings are not the
same.";

else
cout << "String are the same.";

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 18

strcmp's logic

 strcmp compares the numeric codes of elements
in the C-strings a character at a time
 If the two C-strings are the same, strcmp

returns 0
 0 is interpreted as false

 As soon as the characters do not match
 strcmp returns a negative value if the numeric code

in the first parameter is less
 strcmp returns a positive value if the numeric code

in the second parameter is less
 Non-zero values are interpreted as true

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 19

More C-string Functions
 The cstring library includes other functions

 strlen returns the number of characters in a string
int x = strlen(a_string);

 strcat concatenates two C-strings
 The second argument is added to the end of the

first
 The result is placed in the first argument
 Example:

char string_var[20] = "The rain";
strcat(string_var, "in Spain");

Now string_var contains "The rainin Spain"

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 20

Display 8.1 (1)

Display 8.1 (2)

The strncat Function

 strncat is a safer version of strcat
 A third parameter specifies a limit for the

number of characters to concatenate
 Example:
 char string_var[20] = "The rain";

strncat(string_var, "in Spain", 11);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 21

C-strings as
Arguments and Parameters

 C-string variables are arrays
 C-string arguments and parameters are used just

like arrays
 If a function changes the value of a C-string

parameter, it is best to include a parameter for
the declared size of the C-string

 If a function does not change the value of a
C-string parameter, the null character can
detect the end of the string and no size
argument is needed

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 22

C-string Output

 C-strings can be output with the insertion
operator
 Example: char news[] = "C-strings";

cout << news << " Wow."
<< endl;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 23

C-string Input

 The extraction operator >> can fill a C-string
 Whitespace ends reading of data
 Example: char a[80], b[80];

cout << "Enter input: " << endl;
cin >> a >> b;
cout << a << b << "End of

Output";
could produce:

Enter input:
Do be do to you!
DobeEnd of Output

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 24

Reading an Entire Line

 Predefined member function getline can read an
entire line, including spaces
 getline is a member of all input streams
 getline has two arguments

 The first is a C-string variable to receive input

 The second is an integer, usually the size of the first
argument specifying the maximum number of
elements in the first argument getline is allowed to
fill

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 25

Using getline

 The following code is used to read an entire line
including spaces into a single C-string variable
 char a[80];

cout << "Enter input:\n";
cin.getline(a, 80);
cout << a << End Of Output\n";

and could produce:
Enter some input:
Do be do to you!
Do be do to you!End of Output

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 26

getline wrap up

 getline stops reading when the number of
characters, less one, specified in the second
argument have been placed in the C-string

 one character is reserved for the null character
 getline stops even if the end of the line has not

been reached

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 27

getline and Files

 C-string input and output work the same way
with file streams
 Replace cin with the name of an input-file

stream

in_stream >> c_string;
in_stream.getline(c_string, 80);

 Replace cout with the name of an output-file
stream

out_stream << c_string;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 28

getline syntax

 Syntax for using getline is

cin.getline(String_Var, Max_Characters + 1);

 cin can be replaced by any input stream
 Max_Characters + 1 reserves one element for

the null character

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 29

C-String to Numbers

 "1234" is a string of characters
 1234 is a number
 When doing numeric input, it is useful to read

input as a string of characters, then convert
the string to a number
 Reading money may involve a dollar sign
 Reading percentages may involve a percent

sign

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 30

C-strings to Integers

 To read an integer as characters
 Read input as characters into a C-string,

removing unwanted characters
 Use the predefined function atoi to convert the

C-string to an int value

 Example: atoi("1234") returns the integer 1234

atoi("#123") returns 0 because # is not
a digit

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 31

C-string to long

 Larger integers can be converted using the
predefined function atol

 atol returns a value of type long

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 32

C-string to double

 C-strings can be converted to type double using
the predefined function atof

 atof returns a value of type double
 Example: atof("9.99") returns 9.99

atof("$9.99") returns 0.0 because
the

$ is not a digit

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 33

Library cstdlib

 The conversion functions
atoi
atol
atof

are found in the library cstdlib
 To use the functions use the include directive

#include <cstdlib>

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 34

Display 8.2 (1)
Display 8.2 (2)

Numeric Input

 We now know how to convert C-strings to
numbers

 How do we read the input?
 Function read_and_clean, in Display 8.2…

 Reads a line of input
 Discards all characters other than the digits '0'

through '9'
 Uses atoi to convert the "cleaned-up" C-string to int

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 35

Display 8.3 (1)

Display 8.3 (2)

Confirming Input

 Function get_int, from Display 8.3…
 Uses read_and_clean to read the user's input
 Allows the user to reenter the input until the

user is satisfied with the number computed
from the input string

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 36

Section 8.1 Conclusion

 Can you
 Describe the benefits of reading numeric data

as characters before converting the characters
to a number?

 Write code to do input and output with
C-strings?

 Use the atoi, atol, and atof functions?
 Identify the character that ends a C-string?

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

8.2

The Standard string Class

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 38

The Standard string Class

 The string class allows the programmer to treat
strings as a basic data type
 No need to deal with the implementation as

with C-strings
 The string class is defined in the string library

and the names are in the standard namespace
 To use the string class you need these lines:

#include <string>
using namespace std;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 39

Assignment of Strings

 Variables of type string can be assigned with
the = operator
 Example: string s1, s2, s3;

…
s3 = s2;

 Quoted strings are type cast to type string
 Example: string s1 = "Hello Mom!";

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 40

Using + With strings

 Variables of type string can be concatenated
with the + operator
 Example: string s1, s2, s3;

…
s3 = s1 + s2;

 If s3 is not large enough to contain s1 + s2,
more space is allocated

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 41

string Constructors

 The default string constructor initializes the
string to the empty string

 Another string constructor takes a C-string
argument
 Example:

string phrase; // empty string
string noun("ants"); // a string version

// of "ants"

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 42

 It is natural to work with strings in the following
manner
string phrase = "I love" + adjective + " "

+ noun + "!";

 It is not so easy for C++! It must either convert
the null-terminated C-strings, such as "I love",
to strings, or it must use an overloaded +
operator that works
with strings and C-strings Display 8.4

Mixing strings and C-strings

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 43

I/O With Class string

 The insertion operator << is used to output
objects of type string
 Example: string s = "Hello Mom!";

cout << s;
 The extraction operator >> can be used to input

data for objects of type string
 Example: string s1;

cin >> s1;
 >> skips whitespace and stops on encountering

more whitespace

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 44

getline and Type string

 A getline function exists to read entire lines into
a string variable
 This version of getline is not a member of the

istream class, it is a non-member function
 Syntax for using this getline is different than

that used with cin: cin.getline(…)
 Syntax for using getline with string objects:

getline(Istream_Object, String_Object);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 45

getline Example

 This code demonstrates the use of getline with
string objects
 string line;

cout "Enter a line of input:\n";
getline(cin, line);
cout << line << "END OF OUTPUT\n";

Output could be:
Enter some input:
Do be do to you!
Do be do to you!END OF OUTPUT

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 46

 The extraction operator cannot be used to read
a blank character

 To read one character at a time remember to
use cin.get
 cin.get reads values of type char, not type

string
 The use of getline, and cin.get for string input are

demonstrated in Display 8.5 (1)

Display 8.5 (2)

Character Input With strings

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 47

Another Version of getline

 The versions of getline we have seen, stop
reading at the end of line marker '\n'

 getline can stop reading at a character specified
in the argument list
 This code stops reading when a '?' is read

string line;
cout <<"Enter some input: \n";

getline(cin, line, '?');

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 48

getline Declarations

 These are the declarations of the versions of
getline for string objects we have seen
 istream& getline(istream& ins, string& str_var,

char delimiter);

 istream& getline(istream& ins, string& str_var);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 49

Mixing cin >> and getline

 Recall cin >> n skips whitespace to find what it
is to read then stops reading when whitespace
is found

 cin >> leaves the '\n' character in the input stream
 Example: int n;

string line;
cin >> n;

getline(cin, line);

leaves the '\n' which immediately ends getline's
reading…line is set equal to the empty string

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 50

ignore

 ignore is a member of the istream class
 ignore can be used to read and discard all the

characters, including '\n' that remain in a line
 Ignore takes two arguments

 First, the maximum number of characters to discard
 Second, the character that stops reading and

discarding
 Example: cin.ignore(1000, '\n');

reads up to 1000 characters or
to '\n'

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 51

Display 8.6

String Processing

 The string class allows the same operations we
used with C-strings…and more
 Characters in a string object can be accessed

as if they are in an array
 last_name[i] provides access to a single character

as in an array
 Index values are not checked for validity!

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 52

Member Function length

 The string class member function length returns
the number of characters in the string object:

 Example:
int n = string_var.length();

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 53

Equivalent

Equivalent

Other string class functions are found in Display 8.7

Member Function at

 at is an alternative to using []'s to access
characters in a string.
 at checks for valid index values
 Example: string str("Mary");

cout << str[6] << endl;
cout << str.at(6) << endl;
str[2] = 'X';
str.at(2) = 'X';

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 54

Comparison of strings

 Comparison operators work with string objects
 Objects are compared using lexicographic

order (Alphabetical ordering using the order of
symbols in the ASCII character set.)

 = = returns true if two string objects contain
the same characters in the same order
 Remember strcmp for C-strings?

 <, >, <=, >= can be used to compare string
objects

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 55

Back Next
Display 8.1
(1/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 56

Back Next
Display 8.1
(2/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 57

Back Next
Display 8.2
(1/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 58

Back Next

Display 8.2 (2/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 59

Back Next
Display 8.3
(1/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 60

Back Next

Display 8.3 (2/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 61

Back Next
Display 8.3
(3/3)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 62

Back NextDisplay 8.4

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 63

Back Next

Display 8.5 (1/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 64

Back Next
Display 8.5
(2/2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 65

Back Next
Display 8.6

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 66

Back Next

Display 8.7

	APS105: Lectures 18 &19
	How to get user arguments from command line?
	Chapter 8
	Overview
	8.1
	An Array Type for Strings
	C-string Details
	C-string Declaration
	Initializing a C-string
	C-string error
	Don't Change '\0'
	Safer Processing of C-strings
	Assignment With C-strings
	Assignment of C-strings
	A Problem With strcpy
	A Solution for strcpy
	== Alternative for C-strings
	strcmp's logic
	More C-string Functions
	The strncat Function
	C-strings as �Arguments and Parameters
	C-string Output
	C-string Input
	Reading an Entire Line
	Using getline
	getline wrap up
	getline and Files
	getline syntax
	C-String to Numbers
	C-strings to Integers
	C-string to long
	C-string to double
	Library cstdlib
	Numeric Input
	Confirming Input
	Section 8.1 Conclusion
	8.2
	The Standard string Class
	Assignment of Strings
	Using + With strings
	string Constructors
	Mixing strings and C-strings
	I/O With Class string
	getline and Type string
	getline Example
	Character Input With strings
	Another Version of getline
	getline Declarations
	Mixing cin >> and getline
	ignore
	String Processing
	Member Function length
	Member Function at
	Comparison of strings
	Display 8.1�(1/2)
	Display 8.1�(2/2)
	Display 8.2�(1/2)
	Display 8.2 (2/2)�
	Display 8.3�(1/3)
	Display 8.3 (2/3)�
	Display 8.3�(3/3)
	Display 8.4
	Display 8.5 (1/2)�
	Display 8.5�(2/2)
	Display 8.6�
	Display 8.7�

