APS105: Lecture 23

Wael Aboelsaadat

wael@cs.toronto.edu

http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as

supplied by Addison Wesley
!!} Problem §§

Solving

PEARSON

‘Addison
Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Selection Sort Algorithm

= One array Is sufficient to do our sorting
= Search for the smallest value in the array

= Place this value in a[0], and place the value
that was in a|0] in the location where the
smallest was found

= Starting at a[1], find the smallest remaining
value swap it with the value currently in a[1]

= Starting at a[2], continue the process until the
array Is sorted

Display 7.11 | Display 7.12 (1-3)

Slide 7- 2

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DISPLAY 7.12 Sorting an Array (part 1 of 2) D " I 7 1 2 1/2
//Tests the procedure sort. IS p ay [

1

2 #include <iostream>

3 void fill_array(int a[], int size, int& number_used);

4 //Precondition: size is the declared size of the array a.

5 //Postcondition: number_used is the number of values stored in a. N t
6 //a[@] through afnumber_used — 1] have been filled with aC eX
7 //nonnegative integers read from the keyboard.

8 wvoid sort(int a[], int number_used);

9 //Precondition: number_used <= declared size of the array a.

10 //The array elements a[@] through a[number_used — 1] have values.

11 //Postcondition: The values of a[0] through alnumber_used — 1] have
12 //been rearranged so that a[0] <= a[l] <= ... <= a[number_used — 1].
13 void swap_values(int& vl, int& v2);

14 //Interchanges the values of vl and vZ2.

15 int index_of_smallest(const int a[], int start_index, int number_used);
16 //Precondition: 0 <= start_index < number_used. Referenced array elements have
17 //values.

18 //Returns the index i such that a[i] is the smallest of the values

19 //a[start_index], afstart_index + 1], ..., al[number_used — 1].

20 int main()

21 {

22 using namespace std;

23 cout << "This program sorts numbers from lowest to highest.\n";

24 int sample_array[10], number_used;

25 fill_array(sample_array, 10, number_used);

26 sort(sample_array, number_used);

27 cout << "In sorted order the numbers are:\n";

28 for (int index = 0; index < number_used; index++)

29 cout << sample_array[index] << " ";

30 cout << endl;

31 return 0;

32}

33 //Uses iostream:

34 void fill_array(int a[], int size, int& number_used)

35 void sort(int a[], int number_used)

36 {

37 int index_of_next_smallest;

<The rest of the definition of fill_array is given in Display 7.9.>

(continued)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 7-3

Display 7.12 (2/2)

DISPLAY 7.12 Sorting an Array (part 2 of 2)

38 for (int index = 0; index < number_used - 1; index++)

39 {//Place the correct value in a[index]:

40 index_of_next_smallest =

41 index_of_smallest(a, index, number_used); BaCk NeXt
42 swap_values(a[index], a[index_of_next_smallest]);

43 //af@] <= a[l] <=...<= a[index] are the smallest of the original array
44 //elements. The rest of the elements are in the remaining positions.
45 1

46 }

47

48 void swap_values(int& v1, int& v2)

49 {

50 int temp;

51 temp = v1;

52 vl = v2;

53 v2 = temp;

54 1}

55

56 int index_of_smallest(const int a[], int start_index, int number_used)
57 {

58 int min = a[start_index],

59 index_of_min = start_index;

60 for (int index = start_index + 1; index < number_used; index++)

61 if (a[index] < min)

62 {

63 min = a[index];

64 index_of_min = index;

65 //min is the smallest of a[start_index] through a[index]
66 }

67

68 return index_of_min;

69 1}

Sample Dialogue

This program sorts numbers from lowest to highest.
Enter up to 10 nonnegative whole numbers.

Mark the end of the list with a negative number.
80 30 50 70 60 90 20 30 40 -1

In sorted order the numbers are:

20 30 30 40 50 60 70 80 90

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 7-4

Merge Sort Algorithm

38 (27 |43 9|82 10
|EIE 27 43]3| |EIIEEIID|
|33 27 43| 3 982 10
T II III
L I r 1
38 27 | 43 3 9 B2 10
'. '/ 7
|z? 3a 343 o 82 10
\x ¥ Jr /
|3 27 |38 -.'|3| |5|l:|.l:|laz|
3| 9|10 |27 |38 |43 |82
From Wikipedia

http://www.iste.uni-stuttgart.de/ps/Ploedereder/sorter/sortanimation2.html

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 7- 5

http://en.wikipedia.org/wiki/Image:Merge_sort_algorithm_diagram.svg�

Chapter 9

Pointers and Dynamic Arrays

Problem
Solving

PEARSON

"Addisc
Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overview

0.1 Pointers

9.2 Dynamic Arrays

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de -7

Pointers

Problem

Solving

PEARSON

:%(lr: i

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Pointers

= A pointer is the memory address of a variable

= Memory addresses can be used as names for
variables

« If a variable Is stored in three memory
locations, the address of the first can be used
as a name for the variable.

= When a variable is used as a call-by-reference
argument, its address Is passed

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7-9

Pointers Tell
Where To Find A Variable

s An address used to tell where a variable is stored
IN memory IS a pointer

= Pointers "point” to a variable by telling where
the variable Is located

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 10

Declaring Pointers

s Pointer variables must be declared to have a
pointer type

= Example: To declare a pointer variable p that
can "point” to a variable of type double:

double *p;
= The asterisk identifies p as a pointer variable

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-11

Multiple Pointer Declarations

= To declare multiple pointers in a statement, use
the asterisk before each pointer variable

= Example:
Int *pl, *p2, v1, v2;

Pl and p2 point to variables of type int
vl and v2 are variables of type int

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-12

The address of Operator

= The & operator can be used to determine the
address of a variable which can be assigned to a
pointer variable

= Example: Pl = &vi,

plis now a pointer to v1
vl can be called v1 or "the variable
pointed to

by p1"

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-13

The Dereferencing Operator

= C++ uses the * operator in yet another way with
pointers

= The phrase "The variable pointed to by p" is
translated into C++ as *p

= Here the * Is the dereferencing operator
= P IS said to be dereferenced

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7-14

A Pointer Example

= V1 =0; vl and *pl now refer to

pl=8&vl,

the same variable

*Pl =42;
cout << vl << endl;
cout << *pl << end|;

output:
42
42

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 7- 15

	APS105: Lecture 23
	Selection Sort Algorithm
	Display 7.12 (1/2)�
	Display 7.12 (2/2)�
	Merge Sort Algorithm
	Chapter 9
	Overview
	9.1
	Pointers
	Pointers Tell �Where To Find A Variable
	Declaring Pointers
	Multiple Pointer Declarations
	The address of Operator
	The Dereferencing Operator
	A Pointer Example

