
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as
supplied by Addison Wesley

APS105: Lecture 24

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 9

Pointers and Dynamic Arrays

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 3

Pointers

 A pointer is the memory address of a variable
 Memory addresses can be used as names for

variables
 If a variable is stored in three memory

locations, the address of the first can be used
as a name for the variable.

 When a variable is used as a call-by-reference
argument, its address is passed

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 4

Pointers Tell
Where To Find A Variable

 An address used to tell where a variable is stored
in memory is a pointer

 Pointers "point" to a variable by telling where
the variable is located

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 5

Declaring Pointers

 Pointer variables must be declared to have a
pointer type
 Example: To declare a pointer variable p that

can "point" to a variable of type double:

double *p;
 The asterisk identifies p as a pointer variable

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 6

Multiple Pointer Declarations

 To declare multiple pointers in a statement, use
the asterisk before each pointer variable
 Example:

int *p1, *p2, v1, v2;

p1 and p2 point to variables of type int
v1 and v2 are variables of type int

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 7

The address of Operator

 The & operator can be used to determine the
address of a variable which can be assigned to a
pointer variable
 Example: p1 = &v1;

p1 is now a pointer to v1
v1 can be called v1 or "the variable

pointed to
by p1"

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 8

The Dereferencing Operator

 C++ uses the * operator in yet another way with
pointers
 The phrase "The variable pointed to by p" is

translated into C++ as *p
 Here the * is the dereferencing operator

 p is said to be dereferenced

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 9

v1 and *p1 now refer to
the same variable

A Pointer Example

 v1 = 0;
p1 = &v1;
*p1 = 42;
cout << v1 << endl;
cout << *p1 << endl;

output:
42
42

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 10

Pointer Assignment

 The assignment operator = is used to assign
the value of one pointer to another
 Example: If p1 still points to v1 (previous

slide)
then

p2 = p1;

causes *p2, *p1, and v1 all to
name

the same variable

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 11

Display 9.1

Caution! Pointer Assignments

 Some care is required making assignments to
pointer variables
 p1= p3; // changes the location that p1 "points"

to

 *p1 = *p3; // changes the value at the location
that

// p1 "points" to

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 12

The new Operator

 Using pointers, variables can be manipulated
even if there is no identifier for them
 To create a pointer to a new "nameless"

variable of type int:
p1 = new int;

 The new variable is referred to as *p1
 *p1 can be used anyplace an integer variable

can
cin >> *p1;
*p1 = *p1 + 7;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 13

 Variables created using the new operator are
called dynamic variables
 Dynamic variables are created and destroyed

while the program is running
 Additional examples of pointers and dynamic

variables are shown in

An illustration of the code in Display 9.2 is
seen in

Display 9.2

Display 9.3

Dynamic Variables

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 14

new and Class Types

 Using operator new with class types calls
a constructor as well as allocating memory
 If MyType is a class type, then

MyType *myPtr; // creates a pointer to a
// variable of type MyType

myPtr = new MyType;
// calls the default constructor

myPtr = new MyType (32.0, 17);
// calls Mytype(double, int);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 15

Basic Memory Management

 An area of memory called the freestore is
reserved for dynamic variables
 New dynamic variables use memory in the

freestore
 If all of the freestore is used, calls to new will

fail
 Unneeded memory can be recycled

 When variables are no longer needed, they
can be deleted and the memory they used is
returned to the freestore

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 16

The delete Operator

 When dynamic variables are no longer needed,
delete them to return memory to the freestore
 Example:

delete p;

The value of p is now undefined and the
memory used by the variable that p pointed to
is back in the freestore

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 17

Dangling Pointers

 Using delete on a pointer variable destroys the
dynamic variable pointed to

 If another pointer variable was pointing to the
dynamic variable, that variable is also undefined

 Undefined pointer variables are called
dangling pointers
 Dereferencing a dangling pointer (*p) is usually

disasterous

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 18

Variable Types & Lifetime

 Automatic variables
 Dynamic Variables
 Global variables

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 19

Automatic Variables

 Variables declared in a function are created by
C++ and destroyed when the function ends
 These are called automatic variables because

their creation and destruction is controlled
automatically

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 20

Dynamic Variables

 The programmer manually controls creation and
destruction of pointer variables with operators
new and delete

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 21

Global Variables

 Variables declared outside any function definition
are global variables
 Global variables are available to all parts of a

program
 Global variables are not recommended as

good programming practice

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 22

Back NextDisplay 9.1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 23

Back Next

Display 9.2

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 24

Back NextDisplay 9.3

	APS105: Lecture 24
	Chapter 9
	Pointers
	Pointers Tell �Where To Find A Variable
	Declaring Pointers
	Multiple Pointer Declarations
	The address of Operator
	The Dereferencing Operator
	A Pointer Example
	Pointer Assignment
	Caution! Pointer Assignments
	The new Operator
	Dynamic Variables
	new and Class Types
	Basic Memory Management
	The delete Operator
	Dangling Pointers
	Variable Types & Lifetime
	Automatic Variables
	Dynamic Variables
	Global Variables
	Display 9.1
	Display 9.2�
	Display 9.3

