
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as
supplied by Addison Wesley

APS105: Lecture 24

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 9

Pointers and Dynamic Arrays

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 3

Pointers

 A pointer is the memory address of a variable
 Memory addresses can be used as names for

variables
 If a variable is stored in three memory

locations, the address of the first can be used
as a name for the variable.

 When a variable is used as a call-by-reference
argument, its address is passed

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 4

Pointers Tell
Where To Find A Variable

 An address used to tell where a variable is stored
in memory is a pointer

 Pointers "point" to a variable by telling where
the variable is located

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 5

Declaring Pointers

 Pointer variables must be declared to have a
pointer type
 Example: To declare a pointer variable p that

can "point" to a variable of type double:

double *p;
 The asterisk identifies p as a pointer variable

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 6

Multiple Pointer Declarations

 To declare multiple pointers in a statement, use
the asterisk before each pointer variable
 Example:

int *p1, *p2, v1, v2;

p1 and p2 point to variables of type int
v1 and v2 are variables of type int

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 7

The address of Operator

 The & operator can be used to determine the
address of a variable which can be assigned to a
pointer variable
 Example: p1 = &v1;

p1 is now a pointer to v1
v1 can be called v1 or "the variable

pointed to
by p1"

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 8

The Dereferencing Operator

 C++ uses the * operator in yet another way with
pointers
 The phrase "The variable pointed to by p" is

translated into C++ as *p
 Here the * is the dereferencing operator

 p is said to be dereferenced

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 9

v1 and *p1 now refer to
the same variable

A Pointer Example

 v1 = 0;
p1 = &v1;
*p1 = 42;
cout << v1 << endl;
cout << *p1 << endl;

output:
42
42

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 10

Pointer Assignment

 The assignment operator = is used to assign
the value of one pointer to another
 Example: If p1 still points to v1 (previous

slide)
then

p2 = p1;

causes *p2, *p1, and v1 all to
name

the same variable

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 11

Display 9.1

Caution! Pointer Assignments

 Some care is required making assignments to
pointer variables
 p1= p3; // changes the location that p1 "points"

to

 *p1 = *p3; // changes the value at the location
that

// p1 "points" to

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 12

The new Operator

 Using pointers, variables can be manipulated
even if there is no identifier for them
 To create a pointer to a new "nameless"

variable of type int:
p1 = new int;

 The new variable is referred to as *p1
 *p1 can be used anyplace an integer variable

can
cin >> *p1;
*p1 = *p1 + 7;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 13

 Variables created using the new operator are
called dynamic variables
 Dynamic variables are created and destroyed

while the program is running
 Additional examples of pointers and dynamic

variables are shown in

An illustration of the code in Display 9.2 is
seen in

Display 9.2

Display 9.3

Dynamic Variables

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 14

new and Class Types

 Using operator new with class types calls
a constructor as well as allocating memory
 If MyType is a class type, then

MyType *myPtr; // creates a pointer to a
// variable of type MyType

myPtr = new MyType;
// calls the default constructor

myPtr = new MyType (32.0, 17);
// calls Mytype(double, int);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 15

Basic Memory Management

 An area of memory called the freestore is
reserved for dynamic variables
 New dynamic variables use memory in the

freestore
 If all of the freestore is used, calls to new will

fail
 Unneeded memory can be recycled

 When variables are no longer needed, they
can be deleted and the memory they used is
returned to the freestore

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 16

The delete Operator

 When dynamic variables are no longer needed,
delete them to return memory to the freestore
 Example:

delete p;

The value of p is now undefined and the
memory used by the variable that p pointed to
is back in the freestore

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 17

Dangling Pointers

 Using delete on a pointer variable destroys the
dynamic variable pointed to

 If another pointer variable was pointing to the
dynamic variable, that variable is also undefined

 Undefined pointer variables are called
dangling pointers
 Dereferencing a dangling pointer (*p) is usually

disasterous

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 18

Variable Types & Lifetime

 Automatic variables
 Dynamic Variables
 Global variables

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 19

Automatic Variables

 Variables declared in a function are created by
C++ and destroyed when the function ends
 These are called automatic variables because

their creation and destruction is controlled
automatically

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 20

Dynamic Variables

 The programmer manually controls creation and
destruction of pointer variables with operators
new and delete

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 21

Global Variables

 Variables declared outside any function definition
are global variables
 Global variables are available to all parts of a

program
 Global variables are not recommended as

good programming practice

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 22

Back NextDisplay 9.1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 23

Back Next

Display 9.2

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 24

Back NextDisplay 9.3

	APS105: Lecture 24
	Chapter 9
	Pointers
	Pointers Tell �Where To Find A Variable
	Declaring Pointers
	Multiple Pointer Declarations
	The address of Operator
	The Dereferencing Operator
	A Pointer Example
	Pointer Assignment
	Caution! Pointer Assignments
	The new Operator
	Dynamic Variables
	new and Class Types
	Basic Memory Management
	The delete Operator
	Dangling Pointers
	Variable Types & Lifetime
	Automatic Variables
	Dynamic Variables
	Global Variables
	Display 9.1
	Display 9.2�
	Display 9.3

