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Chapter 9

Pointers and Dynamic Arrays
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Pointers

 A pointer is the memory address of a variable 
 Memory addresses can be used as names for 

variables  
 If a variable is stored in three memory 

locations, the address of the first can be used 
as a name for the variable. 

 When a variable is used as a call-by-reference 
argument, its address is passed 
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Pointers Tell 
Where To Find A Variable

 An address used to tell where a variable is stored
in memory is a pointer

 Pointers "point" to a variable by telling where 
the variable is located
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Declaring Pointers

 Pointer variables must be declared to have a 
pointer type
 Example:  To declare a pointer variable p that 

can "point" to a variable of type double:

double  *p;
 The asterisk identifies p as a pointer variable
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Multiple Pointer Declarations

 To declare multiple pointers in a statement, use
the asterisk before each pointer variable
 Example:    

int *p1, *p2, v1, v2;

p1 and p2 point to variables of type int
v1 and v2 are variables of type int



Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 7- 7

The address of Operator

 The & operator can be used to determine the 
address of a variable which can be assigned to a 
pointer variable
 Example:            p1 = &v1;

p1 is now a pointer to v1
v1  can be called v1 or "the variable 

pointed to 
by p1"
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The Dereferencing Operator

 C++ uses the * operator in yet another way with
pointers
 The phrase "The variable pointed to by p" is 

translated into C++ as *p
 Here the * is the dereferencing operator

 p is said to be dereferenced
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v1 and *p1 now refer to 
the same variable

A Pointer Example

 v1 = 0;
p1 = &v1;
*p1 = 42;
cout << v1 << endl;
cout << *p1 << endl;

output:
42
42
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Pointer Assignment

 The assignment operator = is used to assign 
the value of one pointer to another
 Example:      If p1 still points to v1 (previous 

slide)
then

p2 = p1;

causes *p2, *p1, and v1 all to 
name

the same variable
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Display 9.1

Caution! Pointer Assignments

 Some care is required making assignments to 
pointer variables
 p1= p3; // changes the location that p1 "points" 

to

 *p1 = *p3; // changes the value at the location 
that

// p1 "points" to
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The new Operator

 Using pointers, variables can be manipulated 
even if there is no identifier for them
 To create a pointer to a new "nameless" 

variable of type int:
p1 = new int;

 The new variable is referred to as *p1 
 *p1 can be used anyplace an integer variable 

can
cin >> *p1;
*p1 = *p1 + 7;
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 Variables created using the new operator are
called dynamic variables
 Dynamic variables are created and destroyed 

while the program is running
 Additional examples of pointers and dynamic 

variables are shown in 

An illustration of the code in Display 9.2 is 
seen in 

Display 9.2

Display 9.3

Dynamic Variables
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new and Class Types

 Using operator new with class types calls
a constructor as well as allocating memory
 If MyType is a class type, then 

MyType *myPtr; // creates a pointer to a 
// variable of type MyType

myPtr = new MyType; 
// calls the default constructor

myPtr  = new MyType (32.0, 17);
// calls  Mytype(double, int);
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Basic Memory Management

 An area of memory called the freestore is
reserved for dynamic variables
 New dynamic variables use memory in the 

freestore
 If all of the freestore is used, calls to new will 

fail
 Unneeded memory can be recycled

 When variables are no longer needed, they 
can be deleted and the memory they used is 
returned to the freestore
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The delete Operator

 When dynamic variables are no longer needed, 
delete them to return memory to the freestore
 Example:          

delete p;

The value of p is now undefined and the 
memory used by the variable that p pointed to 
is back in the freestore
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Dangling Pointers

 Using delete on a pointer variable destroys the 
dynamic variable pointed to

 If another pointer variable was pointing to the 
dynamic variable, that variable is also undefined

 Undefined pointer variables are called
dangling pointers 
 Dereferencing a dangling pointer (*p) is usually

disasterous
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Variable Types & Lifetime

 Automatic variables
 Dynamic Variables
 Global variables
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Automatic Variables

 Variables declared in a function are created by 
C++ and destroyed when the function ends
 These are called automatic variables because 

their creation and destruction is controlled 
automatically
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Dynamic Variables

 The programmer manually controls creation and 
destruction of pointer variables with operators
new and delete 
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Global Variables

 Variables declared outside any function definition 
are global variables
 Global variables are available to all parts of a 

program
 Global variables are not recommended as 

good programming practice
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