
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as
supplied by Addison Wesley

APS105: Lecture 27

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 14

Recursion

how to approach recursion?
1. Strategy:

- Rewrite the problem definition in a recursive way..
2. Header:

- What info needed as input and output?
- Write the function header.
- Use a noun phrase for the function name

3. Spec:
- Write a method specification in terms of the parameters and return

value.
- Include preconditions

4. Base cases:
1. When is the answer so simple that we know it without recursing?
2. What is the answer in these base cases(s)?
3. Write code for the base case(s)

5. Recursive Cases:
1. Describe the answer in the other case(s) in terms of the answer on

smaller inputs
2. Simplify if possible
3. Write code for the recursive case(s)

Factorial using Recursion

Factorial using Recursion

Factorial using Recursion

Binary Search

 Our algorithm is basically:
 Look at the item in the middle

 If it is the number we are looking for, we are done
 If it is greater than the number we are looking for,

look in the first half of the list
 If it is less than the number we are looking for, look

in the second half of the list

Display 14.7

Display 14.8

Binary Search
An Iterative Version

Display 14.7

Binary Search
Recursive Version

 Since searching each of the shorter lists is a
smaller version of the task we are working on,
a recursive approach is natural

Display 14.8

Binary Search
Recursive Version

Key = 63 Key = 63

Binary Search
Recursive Version

Key = 63 Key = 63

Binary Search
Recursive Version – pseudo code

 Here is our first refinement:
found = false;
mid = approx. midpoint between first and last;
if (key == a[mid])
{

found = true;
location = mid;

}
else if (key < a[mid])

search a[first] through a[mid -1]
else if (key > a[mid])

search a[mid +1] through a[last];

 We must ensure that our algorithm ends
 If key is found in the array, there is no

recursive call and the process terminates
 What if key is not found in the array?

 At each recursive call, either the value of first is
increased or the value of last is decreased

 If first ever becomes larger than last, we know that
there are no more indices to check and key is not in
the array

 The final pseudocode is shown in
Display 14.5

Binary Search
Recursive Version – pseudocode

Display 14.6 (1) Display 14.6 (2)

Binary Search
Writing the Code

 Function search implements the algorithm:
 Function search interface:

void search(const int a[], int first, int last,
int key, bool& found, int& location);

//precondition: a[0] through a[final_index] are
// sorted in increasing order

//postcondition: if key is not in a[0] - a[final_index]
// found = = false; otherwise
// found = = true

Binary Search
Checking the Recursion

 There is no infinite recursion
 On each recursive call, the value of first is

increased or the value of last is decreased.
Eventually, if nothing else stops the recursion,
the stopping case of first > last will be called

Binary Search
Checking the Recursion (cont.)

 Each stopping case performs the correct action
 If first > last, there are no elements between

a[first] and a[last] so key is not in this segment
and it is correct to set found to false

 If k = = a[mid], the algorithm correctly sets
found to true and location equal to mid

 Therefore both stopping cases are correct

Binary Search
Checking the Recursion (cont.)

 For each case that involves recursion, if all
recursive calls perform their actions correctly,
then the entire case performs correctly
Since the array is sorted…
 If key < a[mid], key is in one of elements a[first]

through a[mid-1] if it is in the array. No other
elements must be searched…the recursive call is
correct

 If key > a[mid], key is in one of elements a[mid+1]
through a[last] if it is in the array. No other elements
must be searched… the recursive call is correct

Back NextDisplay 14.5

Back Next

Display 14.6 (1/2)

Back Next
Display 14.6
(2/2)

Back Next

Display 14.7

NextBack

Display 14.8

	APS105: Lecture 27
	Chapter 14
	how to approach recursion?
	Factorial using Recursion
	Factorial using Recursion
	Factorial using Recursion
	Binary Search�
	Binary Search�An Iterative Version
	Binary Search�Recursive Version
	Binary Search�Recursive Version
	Binary Search�Recursive Version
	Binary Search�Recursive Version – pseudo code
	Binary Search� Recursive Version – pseudocode
	Binary Search�Writing the Code
	Binary Search�Checking the Recursion
	Binary Search�Checking the Recursion (cont.)
	Binary Search�Checking the Recursion (cont.)
	Display 14.5
	Display 14.6 (1/2)�
	Display 14.6�(2/2)
	Display 14.7�
	Display 14.8�

