
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as
supplied by Addison Wesley

APS105: Lecture 3

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 1

Introduction to Computers and
C++ Programming

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 3

Operating System

Mouse DriverKeyboard Driver

Operating System

Event
Manager

http://images.google.ca/imgres?imgurl=http://www.codinghorror.com/blog/images/deck_keyboard.jpg&imgrefurl=http://www.codinghorror.com/blog/archives/000209.html&h=301&w=400&sz=25&hl=en&start=3&sig2=8p7vfjj8vswshdksj4XwFA&tbnid=dEAT8X53VR1P2M:&tbnh=93&tbnw=124&ei=ViilRt-9DYTGiQGws8DIDw&prev=/images%3Fq%3Dkeyboard%26gbv%3D2%26svnum%3D10%26hl%3Den�
http://images.google.ca/imgres?imgurl=http://mobilitytoday.com/vbmcms/images/ThinkOutside-Mouse-top.JPG&imgrefurl=http://mobilitytoday.com/archive.php%3Fc%3D44%26type%3Da&h=412&w=302&sz=7&hl=en&start=4&sig2=ivfkis1nodJx9Q1u1vAjcA&tbnid=KcffRR-Ol9990M:&tbnh=125&tbnw=92&ei=BSmlRubjKcy4igGyoszIDw&prev=/images%3Fq%3Dmouse%26gbv%3D2%26svnum%3D10%26hl%3Den�

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 4

Operating System

Mouse DriverKeyboard Driver

Operating System
Event

Manager

http://images.google.ca/imgres?imgurl=http://www.codinghorror.com/blog/images/deck_keyboard.jpg&imgrefurl=http://www.codinghorror.com/blog/archives/000209.html&h=301&w=400&sz=25&hl=en&start=3&sig2=8p7vfjj8vswshdksj4XwFA&tbnid=dEAT8X53VR1P2M:&tbnh=93&tbnw=124&ei=ViilRt-9DYTGiQGws8DIDw&prev=/images%3Fq%3Dkeyboard%26gbv%3D2%26svnum%3D10%26hl%3Den�
http://images.google.ca/imgres?imgurl=http://mobilitytoday.com/vbmcms/images/ThinkOutside-Mouse-top.JPG&imgrefurl=http://mobilitytoday.com/archive.php%3Fc%3D44%26type%3Da&h=412&w=302&sz=7&hl=en&start=4&sig2=ivfkis1nodJx9Q1u1vAjcA&tbnid=KcffRR-Ol9990M:&tbnh=125&tbnw=92&ei=BSmlRubjKcy4igGyoszIDw&prev=/images%3Fq%3Dmouse%26gbv%3D2%26svnum%3D10%26hl%3Den�

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 5

Display 1.3

Computer Input

 Computer input consists of
 A program

 Some data

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 6

High-level Languages

 Common programming languages include …

C C++ Java Pascal Visual Basic FORTRAN
COBOL Lisp Scheme Ada

 These high – level languages
 Resemble human languages
 Are designed to be easy to read and write
 Use more complicated instructions than

the CPU can follow
 Must be translated to zeros and ones for the CPU

to execute a program

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 7

Low-level Languages

 An assembly language command such as

ADD X Y Z

might mean add the values found at x and y
in memory, and store the result in location z.

 Assembly language must be translated to
machine language (zeros and ones)

0110 1001 1010 1011
 The CPU can follow machine language

Assembler
Assembly Language
(symbolic instructions)

Machine language
(binary instructions)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 8

Display 1.4

Compilers

 Translate high-level language to
machine language

 Source code
 The original program in a high level language

 Object code
 The translated version in machine language

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 9

Compilers

int main() {
int nIndex,nSum;
for(nIndex=0; nIndex<10;nIndex++)

nSum =+ 2 * nIndex;
}

.file "foo.c"
.text
.p2align 4,,15

.globl main
.type main, @function

main: push BP
mov $9, AX
mov SP, BP
sub $8, SP
and $-16, SP
.p2align 4,,15

.L6: dec AX
jns .L6
mov BP, SP
pop BP
ret
.size main, .-main
.ident "GCC: (GNU) 3.3.1"

01010101010001
10101010101111
10101001010101
10010101001000
00000001101111
00000000000000
11111111100001

C++ Assembly 1s and 0s

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 10

Display 1.5

Linkers

 Some programs we use are already compiled
 Their object code is available for us to use
 For example: Input and output routines

 A Linker combines
 The object code for the programs we write

and
 The object code for the pre-compiled routines

into
 The machine language program the CPU can

run

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 11

History Note

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 12

Section 1.1 Conclusion

 Can you…
 List the five main components of a computer?

 List the data for a program that adds two numbers?

 Describe the work of a compiler?

 Define source code? Define object code?

 Describe the purpose of the operating system?

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1.2

Programming and Problem-
Solving

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 14

Display 1.6

Algorithms

 Algorithm
 A sequence of precise instructions which

leads to a solution

 Program
 An algorithm expressed in a language the

computer can understand

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 15

Program Design

 Programming is a creative process
 No complete set of rules for creating a program

 Program Design Process
 Problem Solving Phase

 Result is an algorithm that solves the problem
 Implementation Phase

 Result is the algorithm translated into a
programming
language

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 16

Problem Solving Phase

 Be certain the task is completely specified
 What is the input?
 What information is in the output?
 How is the output organized?

 Develop the algorithm before implementation
 Experience shows this saves time in getting

your program to run.
 Test the algorithm for correctness

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 17

Display 1.7

Implementation Phase

 Translate the algorithm into a programming
language
 Easier as you gain experience with the language

 Compile the source code
 Locates errors in using the programming language

 Run the program on sample data
 Verify correctness of results

 Results may require modification of
the algorithm and program

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 18

Object Oriented Programming

 Abbreviated OOP

 Used for many modern programs

 Program is viewed as interacting objects
 Each object contains algorithms to describe

its behavior
 Program design phase involves designing

objects and their algorithms

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 19

Software Life Cycle

 Analysis and specification of the task
(problem definition)

 Design of the software
(object and algorithm design)

 Implementation (coding)
 Maintenance and evolution of the system
 Obsolescence

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 20

Software house: what happens inside?

Understand the requirements

Design the program

Write the program

Test the program

Write Documentation

Project Managers

Software Architects

Development/Programmers

Quality Assurance

Documentation

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 21

Section 1.2 Conclusion

 Can you…
 Describe the first step to take when creating

a program?

 List the two main phases of the program
design process?

 Explain the importance of the problem-solving phase?

 List the steps in the software life cycle?

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1.3

Introduction to C++

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 23

Introduction to C++

 Where did C++ come from?
 Derived from the C language
 C was derived from the B language
 B was derived from the BCPL language

 Why the ‘++’?
 ++ is an operator in C++ and results in a cute pun

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 24

C++ History

 C developed by Dennis Ritchie at AT&T
Bell Labs in the 1970s.
 Used to maintain UNIX systems
 Many commercial applications written in c

 C++ developed by Bjarne Stroustrup at AT&T
Bell Labs in the 1980s.
 Overcame several shortcomings of C
 Incorporated object oriented programming
 C remains a subset of C++

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 25

Display 1.8

A Sample C++ Program

 A simple C++ program begins this way

#include <iostream>
using namespace std;

int main()
{

 And ends this way

return 0;
}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 26

Explanation of code (1/5)

 Variable declaration line

int number_of_pods, peas_per_pod, total_peas;

 Identifies names of three variables to name numbers
 int means that the variables represent integers

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 27

Back NextDisplay 1.3

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 28

Back NextDisplay 1.4

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 29

Back NextDisplay 1.5

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 30

Back NextDisplay 1.6

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 31

Back NextDisplay 1.7

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 32

NextBack

Display 1.8

	APS105: Lecture 3
	Chapter 1
	Operating System
	Operating System
	Computer Input
	High-level Languages
	 Low-level Languages
	Compilers
	Compilers
	Linkers	
	History Note
	Section 1.1 Conclusion
	1.2
	Algorithms
	Program Design
	Problem Solving Phase
	Implementation Phase
	Object Oriented Programming
	Software Life Cycle
	Software house: what happens inside?
	Section 1.2 Conclusion
	1.3
	Introduction to C++
	C++ History
	A Sample C++ Program
	Explanation of code (1/5)
	Display 1.3
	Display 1.4
	Display 1.5
	Display 1.6
	Display 1.7
	Display 1.8�

