
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as
supplied by Addison Wesley

APS105: Lecture 30

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 14

Recursion

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 13

Pointers and Linked Lists

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.1

Nodes and Linked Lists

10 12 14 endhead

Nodes and Linked Lists

 A linked list is a list that can grow and shrink
while the program is running

 A linked list is constructed using pointers
 A linked list often consists of structs that

contain a pointer variable connecting them to
other dynamic variables

Display 13.1

Nodes

 The boxes in the previous drawing represent the
nodes of a linked list
 Nodes contain the data item(s) and a pointer

that can point to another node of the same
type
 The pointers point to the entire node, not an

individual item that might be in the node
 The arrows in the drawing represent pointers

 Nodes are implemented in C++ as structs or
classes
 Example: A structure to store two data items and

a pointer to another node of the same type,
along with a type definition might be:

struct ListNode
{

string item;
int count;
ListNode *link;

};

typedef ListNode* ListNodePtr;

This circular definition
is allowed in C++

Implementing Nodes

The head of a List

 The box labeled head, in display 13.1, is not a
node, but a pointer variable that points to a node

 Pointer variable head is declared as:

ListNodePtr head;

Accessing Items in a Node

 Using the diagram of 13.1, this is one way to
change the number in the first node from
10 to 12:

(*head).count = 12;
 head is a pointer variable so *head is the node

that head points to
 The parentheses are necessary because the

dot operator . has higher precedence than the
dereference operator *

Display 13.2

The Arrow Operator

 The arrow operator -> combines the actions of
the dereferencing operator * and the dot operator
to specify a member of a struct or object pointed
to by a pointer
 (*head).count = 12;

can be written as
head->count = 12;

 The arrow operator is more commonly used

NULL

 The defined constant NULL is used as…
 An end marker for a linked list

 A program can step through a list of nodes by
following the pointers, but when it finds a node
containing NULL, it knows it has come to the end of
the list

 The value of a pointer that has nothing to point
to

 The value of NULL is 0
 Any pointer can be assigned the value NULL:

double* there = NULL;

To Use NULL

 A definition of NULL is found in several
libraries, including <iostream> and <cstddef>

 A using directive is not needed for NULL

Linked Lists

 The diagram in Display 13.2 depicts a linked list
 A linked list is a list of nodes in which each node

has a member variable that is a pointer that
points to the next node in the list
 The first node is called the head
 The pointer variable head, points to the first

node
 The pointer named head is not the head of the

list…it points to the head of the list
 The last node contains a pointer set to NULL

Building a Linked List:
The node definition

 Let's begin with a simple node definition:
struct Node
{

int data;
Node *link;

};

typedef Node* NodePtr;

Building a Linked List:
Declaring Pointer Variable head

 With the node defined and a type definition to
make or code easier to understand, we can
declare the pointer variable head:

NodePtr head;
 head is a pointer variable that will point to the

head node when the node is created

Building a Linked List:
Creating the First Node

 To create the first node, the operator new is used
to create a new dynamic variable:

head = new Node;

 Now head points to the first, and only, node in
the list

Building a Linked List:
Initializing the Node

 Now that head points to a node, we need to
give values to the member variables of the node:

head->data = 3;
head->link = NULL;

 Since this node is the last node, the link is set
to NULL

Function head_insert

 It would be better to create a function to insert
nodes at the head of a list, such as:
 void head_insert(NodePtr& head, int

the_number);
 The first parameter is a NodePtr parameter that points to the

first node in the linked list
 The second parameter is the number to store in the list

 head_insert will create a new node for the number
 The number will be copied to the new node
 The new node will be inserted in the list as the new head node

Display 13.3

Pseudocode for head_insert

 Create a new dynamic variable pointed to by
temp_ptr

 Place the data in the new node called *temp_ptr
 Make temp_ptr's link variable point to the head

node
 Make the head pointer point to temp_ptr

Display 13.4

Translating head_insert to C++

 The pseudocode for head_insert can be written
in C++ using these lines in place of the lines of
pseudocode:
 NodePtr temp_ptr; //create the temporary pointer

temp_ptr = new Node; // create the new node
 temp_ptr->data = the_number; //copy the number
 temp_ptr->link = head; //new node points to first

node
head = temp_ptr; // head points to new

// first node

An Empty List

 A list with nothing in it is called an empty list
 An empty linked list has no head node
 The head pointer of an empty list is NULL

head = NULL;
 Any functions written to manipulate a linked list

should check to see if it works on the empty list

 You might be tempted to write head_insert using
the head pointer to construct the new node:

head = new Node;
head->data = the_number;

 Now to attach the new node to the list
 The node that head used to point to is now

lost!
Display 13.5

Losing Nodes

Memory Leaks

 Nodes that are lost by assigning their pointers a
new address are not accessible any longer

 The program has no way to refer to the nodes
and cannot delete them to return their memory
to the freestore

 Programs that lose nodes have a memory leak
 Significant memory leaks can cause system

crashes

Searching a Linked List

 To design a function that will locate a particular
node in a linked list:
 We want the function to return a pointer to the

node so we can use the data if we find it, else
return NULL

 The linked list is one argument to the function
 The data we wish to find is the other argument
 This declaration will work:

NodePtr search(NodePtr head, int target);

 Refining our function
 We will use a local pointer variable, named

here, to move through the list checking for the
target
 The only way to move around a linked list is to

follow pointers
 We will start with here pointing to the first node

and move the pointer from node to node
following the pointer out of each node

Display 13.6

Function search

Pseudocode for search

 Make pointer variable here point to the head node
 while(here does not point to a node containing target

AND here does not point to the last node)
{

make here point to the next node
}

 If (here points to a node containing the target)
return here;

else
return NULL;

Moving Through the List

 The pseudocode for search requires that pointer
here step through the list
 How does here follow the pointers from node

to node?
 When here points to a node, here->link is the

address of the next node
 To make here point to the next node, make the

assignment:
here = here->link;

Check for last node

A Refinement of search

 The search function can be refined in this way:
here = head;
while(here->data != target && here->link !=
NULL)
{

here = here->next;
}
if (here->data = = target)

return here;
else

return NULL;

 Our search algorithm has a problem
 If the list is empty, here equals NULL before

the while loop so…
 here->data is undefined
 here->link is undefined

 The empty list requires a special case in our
search function

 A refined search function that handles an
empty list is shown in Display 13.7

Searching an Empty List

Back NextDisplay 13.1

Back NextDisplay 13.2

Back Next

Display 13.3

Back NextDisplay 13.4

Back NextDisplay 13.5

Back Next

Display 13.6

Back Next

Display 13.7

	APS105: Lecture 30
	Chapter 14
	Slide Number 3
	Chapter 13
	13.1
	Nodes and Linked Lists
	Nodes
	Implementing Nodes
	The head of a List
	Accessing Items in a Node
	The Arrow Operator
	NULL
	To Use NULL
	Linked Lists
	Building a Linked List:�The node definition
	Building a Linked List:�Declaring Pointer Variable head
	Building a Linked List:�Creating the First Node
	Building a Linked List:�Initializing the Node
	Function head_insert
	Pseudocode for head_insert
	Translating head_insert to C++
	An Empty List
	Losing Nodes
	Memory Leaks
	Searching a Linked List
	Function search
	Pseudocode for search
	Moving Through the List
	A Refinement of search
	Searching an Empty List
	Display 13.1
	Display 13.2
	Display 13.3�
	Display 13.4
	Display 13.5
	Display 13.6�
	Display 13.7�

