
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as
supplied by Addison Wesley

APS105: Lecture 31A

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 13

Pointers and Linked Lists

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

13.1

Nodes and Linked Lists

Display 13.8

Inserting a Node Inside a List

 To insert a node after a specified node in the
linked list:
 Use another function to obtain a pointer to the

node after which the new node will be inserted
 Call the pointer after_me

 Use function insert, declared here to insert the
node:

void insert(NodePtr after_me, int
the_number);

Inserting the New Node

 Function insert creates the new node just as
head_insert did

 We do not want our new node at the head of the
list however, so…
 We use the pointer after_me to insert the new

node

head

after_me temp_ptr

2
2

3
2

7
2

9
0

5
2

Inserting the New Node

 This code will accomplish the insertion of the
new node, pointed to by temp_ptr, after the node
pointed to by after_me:

temp_ptr->link = after_me->link;
after_me->link = temp_ptr;

 The order of pointer assignments is critical
 If we changed after_me->link to point to

temp_ptr first, we would loose the rest of the
list!

 The complete insert function is shown
in Display 13.9

Caution!

Function insert Again

 Notice that inserting into a linked list requires
that you only change two pointers
 This is true regardless of the length of the list
 Using an array for the list would involve

copying as many as all of the array elements to
new locations to make room for the new item

 Inserting into a linked list is often more efficient
than inserting into an array

 To remove a node from a linked list
 Position a pointer, before, to point at the node

prior to the node to remove
 Position a pointer, discard, to point at the node

to remove
 Perform: before->link = discard->link;

 The node is removed from the list, but is still in
memory

 Return *discard to the freestore: delete
discard; Display 13.10

Removing a Node

AssignmentWith Pointers

 If head1 and head2 are pointer variables and
head1 points to the head node of a list:

head2 = head1;
causes head2 and head1 to point to the same list
 There is only one list!

 If you want head2 to point to a separate copy,
you must copy the list node by node or
overload the assignment operator appropriately

Pointers as Iterators

 An iterator is a construct that allows you to
cycle through the data items in a data structure
to perform an action on each item
 An iterator can be an array index, or simply a pointer

 A general outline using a pointer as an iterator:
Node_Type *iter;

for (iter = Head; iter != NULL; iter = iter->Link)
//perform the action on the node iter points to

 Head is a pointer to the head node of the list

Iterator Example

 Using the previous outline of an iterator we
can display the contents of a linked list in this
way:

NodePtr iter;
for (iter = Head; iter != NULL; iter =

iter->Link)
cout << (iter->data);

Back Next

Display 13.7

NextBackDisplay 13.8

Back NextDisplay 13.9

NextBack

Display 13.10

	APS105: Lecture 31A
	Chapter 13
	13.1
	Inserting a Node Inside a List
	Inserting the New Node
	Inserting the New Node
	Caution!
	Function insert Again
	Removing a Node
	AssignmentWith Pointers
	Pointers as Iterators
	Iterator Example
	Display 13.7�
	Display 13.8
	Display 13.9
	Display 13.10�

