APS105: Lecture 31B

Wael Aboelsaadat

wael@cs.toronto.edu

http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as

supplied by Addison Wesley
!!} Problem §§

Solving

PEARSON

‘Addison
Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Chapter 9

Pointers and Dynamic Arrays

Problem
Solving

PEARSON

"Addisc
Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Dynamic Arrays

Problem
Solving

PEARSON

"Addison
Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Dynamic Arrays

= A dynamic array IS an array whose size Is
determined when the program is running, not
when you write the program

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Pointer Variables
and Array Variables

= Array variables are actually pointer variables
that point to the first indexed variable
= Example: int a[10];
typedef int* IntPtr;
IntPtr p;
« Variables a and p are the same kind of variable
= Since a Is a pointer variable that points to af0],
P =4,
causes p to point to the same location as a

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Pointer Variables
As Array Variables

= Continuing the previous example:

Pointer variable p can be used as If it were an

array variable
= Example: p[0], p[1], ...p[9]

Display 9.4

are all legal ways to use p

= Variable a can be used as a pointer variable
except the pointer value in a cannot be

changed
« Thisis not legal: IntPtr p2;

... /I p2 is assigned a value
a = p2 // attempt to change a

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley




Creating Dynamic Arrays

= Normal arrays require that the programmer
determine the size of the array when the program
IS written

= What if the programmer estimates too large?
« Memory is wasted

= What if the programmer estimates too small?
=« The program may not work in some situations

= Dynamic arrays can be created with just the
right size while the program is running

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Creating Dynamic Arrays

= Dynamic arrays are created using the new
operator

=« Example: To create an array of 10 elements of
type double:
typedef double* DoublePtr;
DoublePtr d;
d = new double[10];

t This could be an

Integer variable!

= d can now be used as If it were an ordinary array!

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Dynamic Arrays (cont.)

= Pointer variable d is a pointer to d[0]

= When finished with the array, it should be
deleted to return memory to the freestore

= Example: delete [ ] d;

= The brackets tell C++ a dynamic array is being
deleted so it must check the size to know how many
Indexed variables to remove

= Forgetting the brackets, Display 9.5 (1)
IS not illegal, but would tell
the computer to Display 9.5 (2)

remove only one variable

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Pointer Arithmetic (Optional)

= Arithmetic can be performed on the addresses
contained in pointers

= Using the dynamic array of doubles, d,
declared previously, recall that d points to d[0]

= The expression d+1 evaluates to the address
of d[1] and d+2 evaluates to the address of d[2]

= Notice that adding one adds enough bytes for one
variable of the type stored in the array

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Pointer Arthmetic Operations

= You can add and subtract with pointers
= The ++ and - - operators can be used

= Two pointers of the same type can be
subtracted to obtain the number of indexed
variables between

= The pointers should be in the same array!

= This code shows one way to use pointer
arithmetic:
for (int1=0; 1 < array_size; i++)
cout<<*(d+i)<<" ";
[/ same as cout << d[i] <<

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Multidimensional Dynamic Arrays

= To create a 3x4 multidimensional dynamic array
= View multidimensional arrays as arrays of arrays

= First create a one-dimensional dynamic array

« Start with a new definition:
typedef int* IntArrayPtr;

= Now create a dynamic array of pointers named m:
IntArrayPtr *m = new IntArrayPtr[3];

= For each pointer in m, create a dynamic array of
Int's
o for (int1 = 0; I<3; I++)
ml[i] = new Int[4];

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



A Multidimensial
Dynamic Array

= The dynamic array created on the previous slide

could be visualized like this:

m

ﬁ

!

IntArrayPtr *

Int's

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

l

l

l

«— IntArrayPtr's



Deleting
Multidimensional Arrays

= [0 delete a multidimensional dynamic array

= Each call to new that created an array must
have a corresponding call to delete] |

= Example: To delete the dynamic array created
on a previous slide:
for (1=0;1<3;I1++)
delete [ | m[i]; //delete the arrays of
4 int's
delete [ | m; // delete the array of

INATaYPI's [hishlay 9.6 (1)] Display 9.6 (2)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Display 9.4

//Program to demonstrate that an array variable is a kind of pointer variable.
#include <iostream- < B k

using namespace std;

Next

typedef int* IntPtr;

int main()

{
IntPtr p;
int a[10];
int index;
for (index = 0; index < 10; index++)
a[index] = index;
p=a;
for (index = 0; index < 10; index++)
cout << plindex] << " ";
cout << endl;
for (index = 0; index < 10; index++)
plindex] = plindex] + 1; Note that changes to the
array p are also changes to
. . . the array a.
for (index = 0; index < 10; index++)
cout << af[index] << " ";
cout << endl;
return 0;
}
Output
0123456789
123456738910

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



oSPLAY 55 A Dymamic Arey 1 o2 Display 9.5 (1/2)

//Sorts a list of numbers entered at the keyboard.
#include <iostream>

#include <cstdlib>
#include <cstddef>
Back Next

typedef int* IntArrayPtr;

void fill_array(int a[], int size); =«
//Precondition: size is the size of the array a. parar
10 //Postcondition: a[@] through a[size— 1] have been

11 //filled with values read from the keyboard.

Ordinary &

WO N U B W=

13  void sort(int all, int size) ;=
14 //Precondition: size is the size of the array a.

15 //The array elements af0@] through a[size— 1] have values.

16 //Postcondition: The values of a[@] through a[size— 1] have been rearranged

17 //so that af0] <= a[l] <= ... <= afsize—1].

18

19 int main()

20 {

21 using namespace std;

22 cout << "This program sorts numbers from lowest to highest.\n";
23

24 int array_size;

25 cout << "How many numbers will be sorted? ";
26 cin >> array_size;

27

28 IntArrayPtr a;

29 a = new int[array_size];

30

31 fill_array(a, array_size);

32 sort(a, array_size);

33

34 cout << "In sorted order the numbers are:\n";
35 for (int index = 0; index < array_size; index++)
36 cout << afindex] << ™ "; o

37 cout << endl; T

38

39 delete [] a;

40

41 return 0;

42 }

43

(continued)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Display 9.5

(2/2) (Back | [Next -

DISPLAY 9.5 A Dynamic Array (part 2 of 2)

44 //Uses the library iostream:
45 void fill_array(int a[], int size)

46 {

47 using namespace std;

48 cout << "Enter " << size << " integers.\n";
49 for (int index = 0; index < size; index++)
50 cin >> al[index];

51 }

52

53 wvoid sort(int a[], int size)

<Any implementation of sort may be used. This may or may not require some
additional function definitions. The implementation need not even know that
sort will be called with a dynamic array. For example, you can use the
implementation in Display 7.12 (with suitable adjustments to parameter names).>

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



o Display 9.6 (1/2)

#include <iostream>
using namespace std; < BaCk NeXt

typedef int* IntArrayPtr;

int main( )

{
int dl1, d2;
cout << "Enter the row and column dimensions of the array:\n";
cin >> dl1 >> d2;

IntArrayPtr *m = new IntArrayPtr[dl];
int i, J;
for (i =0; i < dl; i++)
m[i] = new int[d2];
//m is now a dl by d2 array.

cout << "Enter << dl << rows of "
<< d2 << integers each:\n";
for (i = 0; i < dl; i++)
for (j =0; j <d2; j++)
cin >> m[i][j];

cout << "Echoing the two-dimensional array:\n";
for (i = 0; i < dl; i++)

{
for (j =0; j <d2; j++)
cout << m[i][j] << " ";
cout << endl;
}

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Display 9.6
(2/2) <Back Next

A Two-Dimensional Dynamic Array (part 2 of 2)

for (i =0; 1 < dl; i++) Note that there must be one call to delete []

delete[] m[i]; - for each call to new that created an array.

delete[] m; (These calls to deTete [] are not really needed
since the program is ending, but in another
return 0; context it could be important to include them.)

Sample Dialogue

Enter the row and column dimensions of the array:
3 4

Enter 3 rows of 4 integers each:

1234

56738

9012

Echoing the two-dimensional array:

12314

56738
9012

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



	APS105: Lecture 31B
	Chapter 9
	9.2
	Dynamic Arrays
	Pointer Variables  �and Array Variables
	Pointer Variables �As Array Variables
	Creating Dynamic Arrays
	Creating Dynamic Arrays
	Dynamic Arrays (cont.)
	Pointer Arithmetic (Optional)
	Pointer Arthmetic Operations
	Multidimensional Dynamic Arrays
	A Multidimensial �Dynamic Array
	Deleting�Multidimensional Arrays
	Display 9.4�
	Display 9.5  (1/2)�
	Display 9.5�(2/2)
	Display 9.6 (1/2)�
	Display 9.6�(2/2)

