APS105: Lecture 9

Wael Aboelsaadat

wael@cs.toronto.edu

http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as supplied by Addison Wesley

Problem

Walter Savitch

Solving

Constants

- const is the keyword to declare a constant
- Example:
 - const int WINDOW_COUNT = 10; declares a constant named WINDOW_COUNT
 - Its value cannot be changed by the program like a variable
 - It is common to name constants with all capitals

Display 2.16

Display 2.16

```
Back Next
```

```
//File Name: health.cpp (Your system may require some suffix other than cpp.)
//Author: Your Name Goes Here.
//Email Address: you@yourmachine.bla.bla
//Assignment Number: 2
//Description: Program to determine if the user is ill.
//Last Changed: September 23, 2004
                                                Your programs should always
#include <iostream>
                                                 begin with a comment
using namespace std;
                                                 similar to this one.
int main()
    const double NORMAL = 98.6;//degrees Fahrenheit
    double temperature;
    cout << "Enter your temperature: ";</pre>
    cin >> temperature;
    if (temperature > NORMAL)
    {
         cout << "You have a fever.\n";</pre>
         cout << "Drink lots of liquids and get to bed.\n";</pre>
    }
    e1se
         cout << "You don't have a fever.\n";</pre>
         cout << "Go study.\n";</pre>
    }
    return 0;
```

Sample Dialogue

Enter your temperature: **98.6** You don't have a fever. Go study.

Chapter 2 -- End

Chapter 4

Procedural Abstraction and Functions That Return a Value

4.2

Predefined Functions

Functions in math

```
f(x) = \sin(x+10) + \cos(\tan(x)) + \log(x)
what is f(60)?
f(60) = 0.94 + 0.99 + 1.77 = 3.7
```

How to write a function? function-name(parameter1, parameter2,)

Result = function-name(parameter1, parameter2,)

Predefined Functions

- C++ comes with libraries of predefined functions
- Example: sqrt function
 - the_root = sqrt(9.0);
 - returns, or computes, the square root of a number
 - The number, 9, is called the argument
 - the_root will contain 3.0

Function Calls

- sqrt(9.0) is a function call
 - It invokes, or sets in action, the sqrt function
 - The argument (9), can also be a variable or an expression
- A function call can be used like any expression
 - bonus = sqrt(sales) / 10;
 - Cout << "The side of a square with area " << area << " is " << sqrt(area);</p>

Display 4.1

Function Call Syntax

- Function_name (Argument_List)
 - Argument_List is a comma separated list:

```
(Argument_1, Argument_2, ..., Argument_Last)
```

- Example:
 - side = sqrt(area);
 - cout << "2.5 to the power 3.0 is "
 << pow(2.5, 3.0);</pre>

Function Libraries

- Predefined functions are found in libraries
- The library must be "included" in a program to make the functions available
- An include directive tells the compiler which library header file to include.
- To include the math library containing sqrt():

#include <cmath>

 Newer standard libraries, such as cmath, also require the directive

using namespace std;

Other Predefined Functions

- abs(x) --- int value = abs(-8);
 - Returns absolute value of argument x
 - Return value is of type int
 - Argument is of type x
 - Found in the library cstdlib
- fabs(x) --- double value = fabs(-8.0);
 - Returns the absolute value of argument x
 - Return value is of type double
 - Argument is of type double
 - Found in the library cmath

Display 4.2

4.3

Programmer-Defined Functions

Programmer-Defined Functions

- Two components of a function definition
 - Function declaration (or function prototype)
 - Shows how the function is called
 - Must appear in the code before the function can be called
 - Syntax:
 Type_returned Function_Name(Parameter_List);
 //Comment describing what function does
 - Function definition
 - Describes how the function does its task
 - Can appear before or after the function is called
 - Syntax: Type_returned Function_Name(Parameter_List) { //code to make the function work }

Function Definition

- Provides the same information as the declaration
- Describes how the function does its task

```
function_header
```

double total_cost(int number_par, double price_par)
{
 const double TAX_RATE = 0.05; //5% tax
 double subtotal;
 subtotal = price_par * number_par;
 return (subtotal + subtotal * TAX_RATE);
}

function body

The Return Statement

- Ends the function call
- Returns the value calculated by the function
- Syntax:

return expression;

- expression performs the calculation or
- expression is a variable containing the calculated value
- Example:

return subtotal + subtotal * TAX_RATE;

The Function Call

- Tells the name of the function to use
- Lists the arguments
- Is used in a statement where the returned value makes sense
- Example:

double bill = total_cost(number, price);

Display 4.3

Can you rewrite this program using functions?

```
#include <iostream>
using namespace std;
int main()
  char ans
              = 1 1;
  bool bContinue = true;
  bool bError = false;
   do
    if( bError != true )
        cout << "\nHello\n";
    cout << "\nDo you want another greeting?\n"
        << "Press y for yes, n for no, \n"
        << "and then press return: ";
    cin >> ans:
    if ( ans == 'n' || ans == 'N')
       bError = false;
       bContinue = false;
    else
        if( ans=='y' || ans == 'Y')
           bError
                   = false;
           bContinue = true;
       else
           bError
                   = true;
           bContinue = true;
            cout << "\nYou have entered an invalid input\n";
  } while( bContinue );
   cout << "\nGood-Bye\n";
   return 0;
```

Display 4.1

```
Back Next
```

```
//Computes the size of a dog house that can be purchased
//given the user's budget.
#include <iostream>
#include <cmath>
using namespace std;
int main()
    const double COST_PER_SQ_FT = 10.50;
    double budget, area, length_side;
    cout << "Enter the amount budgeted for your dog house $";</pre>
    cin >> budget;
    area = budget/COST_PER_SQ_FT;
    length_side = sqrt(area);
    cout.setf(ios::fixed);
    cout.setf(ios::showpoint);
    cout.precision(2);
    cout << "For a price of $" << budget << endl</pre>
         << "I can build you a luxurious square dog house\n"
         << "that is " << length_side
         << " feet on each side.\n";
    return 0;
}
```

Sample Dialogue

Enter the amount budgeted for your dog house \$25.00 For a price of \$25.00 I can build you a luxurious square dog house that is 1.54 feet on each side.

Display 4.2

Some Predefined Functions

Name	Description	Type of Arguments	Type of Value Returned	Example	Value	Library Header
sqrt	square root	double	doub1e	sqrt(4.0)	2.0	cmath
pow	powers	doub1e	doub1e	pow(2.0,3.0)	8.0	cmath
abs	absolute value for <i>int</i>	int	int	abs(-7) abs(7)	7 7	cstdlib
labs	absolute value for <i>1 ong</i>	long	long	labs(-70000) labs(70000)	70000 70000	cstdlib
fabs	absolute value for double	double	double	fabs(-7.5) fabs(7.5)	7.5 7.5	cmath
ceil	ceiling (round up)	double	double	ceil(3.2) ceil(3.9)	4.0 4.0	cmath
floor	floor (round down)	double	double	floor(3.2) floor(3.9)	3.0 3.0	cmath

A Function Definition (part 1 of 2)

```
#include <iostream>
using namespace std;
double total_cost(int number_par, double price_par);
                                                               __function declaration
//Computes the total cost, including 5% sales tax,
//on number_par items at a cost of price_par each.
int main()
    double price, bill;
    int number;
    cout << "Enter the number of items purchased: ";</pre>
    cin >> number;
    cout << "Enter the price per item $";</pre>
                                           function call
    cin >> price;
    bill = total cost(number, price);
    cout.setf(ios::fixed);
    cout.setf(ios::showpoint);
    cout.precision(2);
    cout << number << " items at "</pre>
         << "$" << price << " each.\n"
         << "Final bill, including tax, is $" << bill
         << endl:
                                                         function
    return 0;
                                                         heading
}
double total_cost(int number_par, double price_par)
    const double TAX_RATE = 0.05; //5% sales tax
    double subtotal:
                                                          function
                                                                        function
                                                           body
                                                                        definition
    subtotal = price par * number par;
    return (subtotal + subtotal*TAX_RATE);
```

Display 4.3 (1/2)

