APS105: Lecture 9

Wael Aboelsaadat

wael@cs.toronto.edu
 http://ccnet3.utoronto.ca/20079/aps105h1f/

Acknowledgement: These slides are a modified version of the text book slides as supplied by Addison Wesley

Constants

- const is the keyword to declare a constant
- Example:
const int WINDOW_COUNT = 10; declares a constant named WINDOW_COUNT
- Its value cannot be changed by the program like a
variable
- It is common to name constants with all capitals

Display 2.16

Comments and Named Constants

```
//Fi7e Name: hea7th.cpp (Your system may require some suffix other than cpp.)
//Author: Your Name Goes Here.
//Emai7 Address: you@yourmachine.b7a.b7a
//Assignment Number: 2
//Description: Program to determine if the user is i77.
//Last Changed: September 23, 2004
    #include <iostream>
    using namespace std;
                <
                                    隹 programs should always
                            similar to this one.
    int main()
    {
        const doub7e NORMAL = 98.6;//degrees Fahrenheit
        doub7e temperature;
        cout << "Enter your temperature: ";
        cin >> temperature;
        if (temperature > NORMAL)
        {
            cout << "You have a fever.\n";
            cout << "Drink lots of liquids and get to bed.\n";
        }
        e7se
        {
        cout << "You don't have a fever.\n";
        cout << "Go study.\n";
    }
    return 0;
}
```


Sample Dialogue

```
Enter your temperature: 98.6
You don't have a fever.
Go study.
```


Chapter 2 -- End

Chapter 4

Procedural Abstraction and Functions That Return a Value

4.2

Predefined Functions

Functions in math

$\mathrm{f}(\mathrm{x})=\sin (\mathrm{x}+10)+\cos (\tan (\mathrm{x}))+\log (\mathrm{x})$
what is $f(60)$?

$$
f(60)=0.94+0.99+1.77=3.7
$$

How to write a function? function-name(parameter1, parameter2,)

Result = function-name(parameter1, parameter2,)

Predefined Functions

- C++ comes with libraries of predefined functions
- Example: sqrt function
- the_root = sqrt(9.0);
- returns, or computes, the square root of a number
- The number, 9 , is called the argument
- the_root will contain 3.0

Function Calls

- $\operatorname{sqrt}(9.0)$ is a function call
- It invokes, or sets in action, the sqrt function
- The argument (9), can also be a variable or an expression
- A function call can be used like any expression
- bonus = sqrt(sales) / 10;
- Cout << "The side of a square with area " << area

$$
\begin{aligned}
& \text { <<" is" } \\
& \ll \text { sqrt(area); }
\end{aligned}
$$

Function Call Syntax

- Function_name (Argument_List)
- Argument_List is a comma separated list:
(Argument_1, Argument_2, ... , Argument_Last)
- Example:
- side = sqrt(area);
- cout << " 2.5 to the power 3.0 is " << pow(2.5, 3.0);

Function Libraries

- Predefined functions are found in libraries
- The library must be "included" in a program to make the functions available
- An include directive tells the compiler which library header file to include.
- To include the math library containing sqrt():

> \#include <cmath>

- Newer standard libraries, such as cmath, also require the directive
using namespace std;

Other Predefined Functions

- abs(x) --- int value = abs(-8);
- Returns absolute value of argument x
- Return value is of type int
- Argument is of type x
- Found in the library cstdlib
- fabs(x) --- double value = fabs(-8.0);
- Returns the absolute value of argument x
- Return value is of type double
- Argument is of type double
- Found in the library cmath

Display 4.2

4.3

Programmer-Defined Functions

Programmer-Defined Functions

- Two components of a function definition
- Function declaration (or function prototype)
- Shows how the function is called
- Must appear in the code before the function can be called
- Syntax:

Type_returned Function_Name(Parameter_List); ; //Comment describing what function does

- Function definition
- Describes how the function does its task
- Can appear before or after the function is called
- Syntax:

Type_returned Function_Name(Parameter_List)
\{
//code to make the function work \}

Function Definition

- Provides the same information as the declaration
- Describes how the function does its task function header
- Example:

\rightarrow double total_cost(int number_par, double price_par) \{
const double TAX_RATE $=0.05$; //5\% tax double subtotal; subtotal = price_par * number_par; return (subtotal + subtotal * TAX_RATE);
function body

The Return Statement

- Ends the function call
- Returns the value calculated by the function
- Syntax:
return expression;
- expression performs the calculation or
- expression is a variable containing the calculated value
- Example: return subtotal + subtotal * TAX_RATE;

The Function Call

- Tells the name of the function to use
- Lists the arguments
- Is used in a statement where the returned value makes sense
- Example:
double bill = total_cost(number, price);

Display 4.3

Can you rewrite this program using functions?

\#include <iostream>

```
using namespace std,
int main( )
{
    Char ans }=1\mathrm{ '';
    bool bError = false;
    do
    {
        if(bError != true )
    cout << "\nHello\n";
    cout << "\nDo you want |nother greeting?\n"
        << "Press y for yes, n for no, \n"
            < "and then press return: ";
        cin >> ans
    <
    if(ans=='n' | | ans == 'N')
        bError = false;
        bContinue = false;
        else
            if(ans=='y' || ans == 'Y')
            bError = false:
            bContinue = true;
            else
            else
            bError = true;
            bContinue = true;
            cout << "\nYou have entered an invalid input\n";
    } while(bContinue ):
    cout << "', nGood-Bye\n";
    return 0;
}
```

```
//Computes the size of a dog house that can be purchased
//given the user's budget.
#include <iostream>
#include <cmath>
using namespace std;
    int main()
    {
        const doub7e COST_PER_SQ_FT = 10.50;
        doub7e budget, area, length_side;
        cout << "Enter the amount budgeted for your dog house $";
        cin >> budget;
        area = budget/COST_PER_SQ_FT;
        length_side = sqrt(area);
        cout.setf(ios::fixed);
        cout.setf(ios::showpoint);
        cout.precision(2);
        cout << "For a price of $" << budget << endl
        << "I can build you a luxurious square dog house\n"
        << "that is " << length_side
        << " feet on each side.\n";
    return 0;
}
```


Sample Dialogue

```
Enter the amount budgeted for your dog house $25.00
For a price of $25.00
I can build you a luxurious square dog house
that is }1.54\mathrm{ feet on each side.
```


Display 4.2

Back Next

Some Predefined Functions

Name	Description	Type of Arguments	Type of Value Returned	Example	Value	Library Header
sqrt	square root	doub7e	doub7e	sqrt(4.0)	2.0	cmath
pow	powers	doub7e	doub7e	$\operatorname{pow}(2.0,3.0)$	8.0	cmath
abs	absolute value for int	int	int	$\begin{aligned} & \operatorname{abs}(-7) \\ & \operatorname{abs}(7) \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	cstdlib
1abs	absolute value for 7ong	7ong	7ong	$\begin{aligned} & \text { 1abs }(-70000) \\ & \text { labs }(70000) \end{aligned}$	$\begin{aligned} & 70000 \\ & 70000 \end{aligned}$	cstdib
fabs	absolute value for double	doub7e	doub7e	$\begin{aligned} & \text { fabs }(-7.5) \\ & \text { fabs }(7.5) \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	cmath
cei1	ceiling (round up)	doub7e	doub7e	$\begin{aligned} & \text { ceit(3.2) } \\ & \text { ceil(3.9) } \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	cmath
floor	floor (round down)	doub7e	doub7e	floor(3.2) floor(3.9)	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	cmath

A Function Definition (part 1 of 2)

\#include <iostream> using namespace std;
doub7e total_cost(int number_par, doub7e price_par); \qquad function declaration //Computes the total cost, including 5\% sales tax, //on number_par items at a cost of price_par each.
int main()
int main()
\{
double price, bill;
int number;
cout << "Enter the number of items purchased: ";
cin >> number;
cout << "Enter the price per item \$";
cin >> price; function call
bil1 = total_cost(number, price);
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout. precision(2);
cout \ll number \ll " items at "
<< "\$" << price << " each.\n"
<< "Final bill, including tax, is \$" << bill
<< endl;
return 0 ;
\}
doub7e total_cost(int number_par, doub7e price_par) \downarrow
\{
const double TAX_RATE $=0.05$; //5\% sa7es tax
double subtotal;
subtotal = price_par * number_par;
return (subtotal + subtotal*TAX_RATE);
\}

