
CSC108H Assignment 1

Due Feb. 11, 2011 by 10 pm

Introduction

In this assignment you will build a module called charlie and you will write several functions for it. Like
legendary comedian Charlie Chaplin, our module will be multitalented: it will include functions from Boolean
logic, geometry and digit reasoning.

Download the seed file charlie.py from Blackboard. You will be filling it in as you go along.

Submission

You are allowed and encouraged to work in pairs on this assignment. You will be submitting it to MarkUs as
outlined in class. You should only submit the file charlie.py. It should not execute any code when it’s being
imported. You are welcome to use the __main__ block for testing purposes but make sure that when you
submit, the only statements it contains are those required in Part 6. You are not allowed to import/use any other
modules or to write additional functions when writing charlie.

Part 1: Boolean Logic

Boolean logic is a system of principles that governs operations done with Boolean values. So far, we are familiar
with the logical operators NOT, AND and OR. There are three other operators that Boolean logic often uses in
applications such as binary circuits:

NAND (Negated AND): This operation yields True iff at least one of the operands is False.

XOR (Exclusive OR): This operation yields True iff exactly one of the operands is True.

NOR (Negated OR): This operation yields True iff both operands are False.

These operations can be derived from NOT, AND and OR. Fill in the bodies of nand(), xor() and nor():
the corresponding function for each of these operations. Each function should take two Boolean values as
arguments and return the appropriate result of the operation by using a combination of and, or and not.

Part 2: Universal Logical Operators

Some operators in logic have a special property: you can generate the result of any other logical operator just by
combining operands using these special operators. These are known as universal operators. NAND is one
such operator. It’s possible to create the equivalent of any logical operation we’ve seen above, as well as NOT,
AND and OR by using a combination of NAND operations. (By the way, two logical operations are equivalent if
they have the same truth table, in other words, if they yield the same results for every combination of input
values.)

For example, we can create an equivalent to NOT by computing the NAND of the operand with itself:

x NOT x X NAND x
True False False
False True True

If x is True, then True NAND True is False, which is the same result as NOT True.
If x is False, then False NAND False is True, which is the same as NOT False.

You will notice the nand_not(a) function is already implemented in the seed file.

Fill in the bodies of the following functions:

- nand_or(a,b) which takes two parameters and returns True iff at least one of them is True.
- nand_and(a,b) which takes two parameters and returns True iff both of them are True.

Inside the function you are not allowed to use comparison operators, conditionals (ifs) or the keywords not,
and, or or. You must only use calls to the nand function you wrote above (and, if you absolutely have to,
assignment statements).

Part 3: Factors, Areas and Volumes

Fill in the bodies of the following functions and write docstrings for them. Unless otherwise specified, you should
assume that the parameters can be integers or floats. Your functions should not lose precision and, unless
otherwise specified, they should return floats:

factor(a,b): takes as parameters two integers and returns True if a is divisible by b. 1 is a factor.

area_triangle(b,h): takes as parameters the base and height of a triangle and returns its area.

area_prism(h,w,d): takes the height, width and depth of a rectangular prism and returns its surface area.

volume_prism(h,w,d): takes the height, width and depth of a rectangular prism and returns its volume.

The mathematical formulae for areas and volumes can be found online.

Part 4: Digit by Digit

In this part you will learn how to isolate digits in a four-digit number. You will need to complete the body of the
function digit_info(num) that takes a 4-digit number, stores each of its digits in a variable and prints, on
consecutive lines, the sum of the digits of the number, a breakdown of the number by digits, and the reverse of
the number.

Example: To find the tens digit of 436:

1) Eliminate everything before the tens digit by computing the modulo of the 436 with 100:

436 % 100 = 36

2) Compute the integer division of the result with 10 to get the number of tens:

36 / 10 = 3

Fill in the bodies of the following functions:

thousands(num): returns the thousands digit of num

hundreds(num): returns the hundreds digit of num

tens(num): returns the tens digit of num

units(num): returns the units digit of num

*Note: Each function takes the four-digit number as an argument, and that’s the only parameter it’s allowed.

Part 5: Digit by digit (better)

You may have noticed that some of the four helper functions you wrote above contain code which looks quite
similar. There is a general algorithm to obtain any digit of a number, and you have been using special cases of it.

You should complete the function called digit(num, pos) that takes two parameters: the 4-digit number
and the position of the digit you’d like (0 for the units, 1 for the tens, 2 for the hundreds and 3 for the thousands).
The function should return the selected digit as an int. It should not call any functions from Part 4 or use if
statements. It should also work with a number of any length.

Finally, write a new function called digit_info2 that does the same thing as digit_info, except it only
calls the new function digit.

Part 6: Standalone charlie

While charlie contains useful functions that do various things, it doesn’t do anything as a standalone program.

In the __main__ block of the module, write code that asks for a number from the user. Your program should
use raw_input() and work with any integer string entered by the user. You are not responsible for dealing
with arbitrary strings that can’t be converted to integers. If the number entered is not a positive integer less than
100, the program should print a helpful message and ask again until the user enters an appropriate integer. Once
the program has a user-entered number in the desired range, it should store it in a variable called user_num.

Then, it should print the factors of the number on separate lines. A is a factor of B if B is evenly divisible by A,
that is, if B / A has no remainder. The smallest possible factor a positive integer can have is 1. The largest factor
of any positive integer is the integer itself.

Your program should check every number between 1 and user_num, in ascending order. It should print the
number on its own line if it’s a factor of user_num, and it shouldn’t print anything if it’s not. Your code should
call the function factor(a,b) you wrote in Part 3.

Sample output:

Please enter a number: 4
1
2
4

Marking, Style and Specifications

These are the aspects of your work that we will focus on in the marking:
• Correctness: Your functions should perform exactly as specified. Correctness, as measured by our tests,

will count for the largest single portion of your marks.
• Formatting style: Make sure that you follow the formatting rules in the Assignment Style Guide.
• Programming style: Your variables' names should be meaningful, and your code as simple and clear

as possible.
• Docstrings: Each function should have a docstring that describes its parameters, what the function does,

and what is returned by the function, if anything.

There should be no console output from your program other than what is explicitly specified above, and there
should be no calls to raw_output() anywhere inside a function definition. If a function unexpectedly outputs
to the console, or asks for user input, you will receive 0 for correctness on that function. You should also not
change the headers of functions definitions – they should only take the parameters specified.

