CSC108H/A08H Dictionary Lab

To earn your lab marks, you must actively participate in the lab. As usual, pick a partner and do pair
programming (take turns driving and navigating). At the end of the lab, please show your work to your TA
and return this handout. We will post the handout on the course website at the end of the week.

1 Objectives

e Understand dictionaries and how they store information.
e Use dictionaries to solve complex tasks.

For this lab, you will write down the inputs you will use to verify the functions and the
expected outputs before you implement them! You won’t get credit for your work unless you
do.

2 Dictionaries

For the following exercises, you will be working with a data set that contains changes in the daily spot
exchange rate of the US dollar to the British pound:

http://www.stat.duke.edu/ "mw/data-sets/ts_data/exchange-rates

Each number indicates the amount that the exchange rate changed on a given day. You may use urlopen
from module urllib to open this file directly from the web. Then, you can get data from the file just like
in last week’s lab.

When testing your code, it will be convenient to have a smaller data set. One is available on the course
website. You should also create smaller data sets of your own. For example, a one-line file is a good starter
test for file_to_dict.

Your tasks

1. Download the starter code, dict.py, from the labs page.

2. Read the docstring for function dict_to_str. Make sure that you understand what it is supposed to
do in all circumstances.

3. Write down a good set of test cases for function dict_to_str: a set of argument values to the function,
and the return value that you would expect to get in each case. A good set of test values will allow
you to be confident that the function works for any possible argument it might be given.

This is a hard problem, so think about it: there are a lot of possibilities!] Make your tests as sim-
ple and specific as possible. Pick argument values to represent an entire category of possibilities, and
look for inputs that cause your code to produce different behavior. Here’s a starting point for your list
of test cases: an empty dict, a dict with 1 entry, and a dict with more than 1 entry.

4. Write a main block that calls your function once for each test case. (No, you don’t have the function
yet!) Note that, for this particular function, you won’t be able to use assert statements to check the
result of each function call. Why not?

5. Now implement dict_to_str, and verify that the output is correct for each test case.

6. Write down a good set of test values for function dict_to_str_sorted and implement them in your
main block.

7. Now implement dict_to_str_sorted, and verify your code to make sure it passes the tests.



. Look at the sample data sets and design tests for function file_to_dict. First, make sure you
understand the structure of the dictionary it produces. Try defining one with that structure “by hand”
to make sure. Then implement and test the function.

. Work through the rest of the functions, always designing your test values first.



