
CSC108H Lab 9: Testing and Debugging

As usual, pick a partner and complete the lab using pair programming (taking turns driving and navigating). At
the end of the lab, please return this handout to your TA. We will post the handout on the course website at the
end of the week.

Objectives

• Practice selecting good test cases.

• Practice implementing a set of test cases using nose.

Testing

In this lab, you will write a nose test suite to thoroughly test several functions, then use it to identify and fix any
bugs that you find.

1. Download buggy_functions.py and test_buggy_functions.py from the lab page. The module
buggy_functions.py contains is_lowercase as well as a handful of other functions for which you will
write tests. test_buggy_functions.py already contains a set of nose tests for is_lowercase. Take a
look at the structure of the file. Each of the tests contains a single assert statement that checks that the
function being tested returns the correct value, and each test is named to inform you that it is a test, that it is
testing a specific function, and that it is testing a specific input to that function. The __main__ block contains
a single line that causes all of the test functions in the module to be called.

2. Run the test module. You’ll find that at least one of the tests for is_lowercase fails. Look at the output to
determine which case is triggering the error and then edit buggy_functions.py to correct the error. Re-
run the tests to verify that your fix is correct.

3. The table on the next page describes the remaining functions in the module. Several (perhaps all) of the
functions in buggy_functions.py have at least one error. Your job is to find them. Use the following steps
for each of the functions:

(a) Write down the inputs to the function, and make a list of the “attributes” (or features) of these inputs that you
could vary across your test cases. For example, if one parameter is a list, you could vary its length.

(b) Use these ideas to generate a table of interesting test cases for the function. It should look like this (but with
lots of rows):

Input Values Expected Result Purpose

Each row represents a single test cases. Make sure that, among the rows of the table, you cover the issues that
you raised above, E.g., for a function with a list as a parameter, make sure you include tests cases with different
list lengths.

(c) Write a nose test in test_buggy_functions.py for each test case in your table. Each of your tests
should use assert to check the result of the function on the input with the expected output. Make sure to include
a descriptive message for each assert statement so that you know which test case fails.

(d) Run your tests. If you find any errors, debug and correct them.

(e) Switch driver and navigator.

evens(list)

Given a list, return a new list consisting of those members of the given
list whose index is even. Items in the new list should be in the same
order as they appear in the given list. Do not modify the original list.

reverse(list) Given a list, return a new list that contains the items from the original
list in reverse order. Do not modify the original list, and do not use
list.reverse.

left_strip(str, str) Given two strings, where the second is a single-character string, return
a new string identical to the first string but with any occurrences of the
second string removed from the beginning. For example,
left_strip("fffabcdefffg", "f") should return
"abcdefffg". (This is much like str.lstrip.) Do not use any
str methods to implement this function.

halve_my_digits(str) Given a string of digits, return a string that represents the number
obtained by dividing each digit in the given string by 2 (integer
division). For example, halve_my_digits("123456") should
return the string "011223".

