
University of Toronto

CSC108: Introduction to Computer
Programming

Lecture 1
Wael Aboulsaadat

Acknowledgment: these slides are based on material by: Velian Pandeliev, Diane Horton,
Michael Samozi, Jennifer Campbell, and Paul Gries from CS UoT

University of Toronto

CSC108: Introduction to Computer Programming

1

Welcome!

 No prerequisites, no previous experience required

 Course objectives: Understanding fundamental
programming principles, combining them to generate
solutions to interesting problems and writing
programs in Python

 Topics: variables, functions, conditionals, loops,
debugging, testing, text file processing, dictionaries,
sorting, algorithm design, image manipulation

University of Toronto

CSC108: Introduction to Computer Programming

2

Recommended Text Book

Practical Programming
An Introduction to Computer Science
Using Python
J. Campbell, P. Gries, J. Montojo, G. Wilson
Publisher: Pragmatic Programmers 2009

University of Toronto

CSC108: Introduction to Computer Programming

3

Website
 CSC108 is hosted on Blackboard

(www.portal.utoronto.ca)

 You can login with your UTORid and password

 There you will find:
̶ Lecture notes
̶ Labs and Assignments
̶ Discussion Boards

http://www.portal.utoronto.ca/�

University of Toronto

CSC108: Introduction to Computer Programming

4

Evaluation

 3 Assignments  30%

 1 Midterm  10%

 4 Quizzes  10%

 10 Labs  5%

 11 CodeLabs  5%

 Final Exam  40%

100% !

University of Toronto

CSC108: Introduction to Computer Programming

520

Labs (5%) and CodeLabs (5%)
 Labs are weekly two-hour practice sessions in

groups of 20-25. Marks are earned through
attendance and effort. They start next week: check
website for room assignment.

 CodeLabs are small online exercises due every
Monday morning by the beginning of class. They are

found at www.turingscraft.com

 Register for CodeLabs online with your real name and U
of T e-mail address. Cost: $25 US

http://www.turingscraft.com/�

University of Toronto

CSC108: Introduction to Computer Programming

6

 All involve writing Python programs

 Submitted electronically by 10 pm on the due date. No
late assignments will be accepted.

 You can work in pairs on Assignments 1 and 3

 Assignment 2 must be done individually

 You must work with different partners on Assignment 1
and Assignment 3

Assignments (30%)

University of Toronto

CSC108: Introduction to Computer Programming

7

Quizzes (10%), Midterm (10%), Exam (40%)

 Four 15-minute single-question quizzes will be spread
out over the term

 There’s a 50-minute in-class midterm

 The 3-hour final exam will be written in the April exam
period.

 You need 40% on the exam to pass the course.

University of Toronto

CSC108: Introduction to Computer Programming

8

Administrative Notes

 There is no make-up date for the midterm. If you’re
sick or away for a legitimate reason, other course
components will be applied to your midterm mark.

 If you are sick, you need a doctor’s note from the
University clinic for any accommodations to be made.

 Re-marking: if you believe there’s a reason why your
work should be looked at again, you have 7 days
from the time your work is returned to you to file a
request (form is on the site).

University of Toronto

CSC108: Introduction to Computer Programming

9

Computing on Campus
 Computing Discipline Facility (CDF)

 Bahen Centre (BA3200, BA2200, BA2210, BA2220,
BA2240, BA2270), Gerstein Centre (2nd floor)

 BA3175, BA3185, BA3195 are also available, but they’re
often reserved for labs

 To login to CDF, find your username at
http://www.cdf.toronto.edu/cgi-bin/webfinger

 Your password is initially your student number

http://www.cdf.toronto.edu/cgi-bin/webfinger�

University of Toronto

CSC108: Introduction to Computer Programming

10

Getting Help

 Labs (practice)

 Office hours (Wed 3–5 in Bahen 4261)

 DCS Help Centre (BA2200, 4-6 pm Mon-Thurs)

 Online discussion boards (for general questions)

 E-mail: wael@cs.toronto.edu (for personal matters)

University of Toronto

CSC108: Introduction to Computer Programming

11

Academic Offences

 Never share solutions with another person or group

 Discuss assignment solutions only with course TAs
and instructors

 Keep your eyes on your own test

 Do not use code you didn’t write

University of Toronto

CSC108: Introduction to Computer Programming

12

In Class

 I will teach and pause for questions

 Let me know if I’m going too quickly or too slowly

 Be respectful and considerate of others

University of Toronto

CSC108: Introduction to Computer Programming

13

Computers and Programming

University of Toronto

CSC108: Introduction to Computer Programming

14

Programs

 A program is a set of instructions that a computer
understands and executes.

 We write programs to accomplish tasks or solve
problems.

 There are two steps to writing a program:
1) Devise an algorithm that solves the problem

(language-independent)
2) Come up with the appropriate sequence of instructions

to execute (language-specific)

University of Toronto

CSC108: Introduction to Computer Programming

15

E.g. The average of 5 numbers

 Problem:
Given five numbers, find their average.
̶ What’s the algorithm for solving this problem?
̶ And the program?

University of Toronto

CSC108: Introduction to Computer Programming

16

Programming Languages

 Programming languages are artificial languages that
enable humans to convey sequences of instructions to a
computer.

 Like natural languages, they have rules, grammar and
syntax.

University of Toronto

CSC108: Introduction to Computer Programming

17

Computers and Computation
 We know two discordant things about computers:

1) They are incredibly powerful and have applications
in every avenue of human activity

2) They are fast glorified calculators that work with
strings of 1’s and 0’s
110001010101010100101010010101001010010010100
01010101001110110101010….

University of Toronto

CSC108: Introduction to Computer Programming

18

Computer Architecture

University of Toronto

CSC108: Introduction to Computer Programming

19

Memory

 Computer memory is binary (uses 1’s and 0’s to
encode information)

 A single binary digit is called a bit

 Every piece of data and every instruction in memory
ends up as a binary string

University of Toronto

CSC108: Introduction to Computer Programming

20

CPU
 Every CPU has a rigid set of (about 50) operations it

can perform, including arithmetic operations and
memory manipulation

 Each of these operations has a unique binary code
(known as an opcode) that the CPU recognizes

- E.g. The bit string 00000011 signals an addition

 The CPU reads programs from memory and
performs computations according to the sequence of
opcodes it encounters

University of Toronto

CSC108: Introduction to Computer Programming

21

Language Abstraction

 To be executed, programs have to end up as binary
strings that the CPU can read

 In theory, one could write any program just by
manipulating the 1’s and 0’s stored on a computer’s
hard drive

 However, programmers would have to remember a
lot of binary opcodes and mistakes would be very
hard to catch

University of Toronto

CSC108: Introduction to Computer Programming

22

Low-Level Languages

 In low-level languages (also called assembly or
machine languages), every operation the CPU can
perform has a mnemonic code, e.g. ADD for
addition, MOV for moving values

 Low-level code is automatically converted to binary
before being fed to the CPU

 Low-level languages are hardware-specific - every CPU
architecture uses a different one

University of Toronto

CSC108: Introduction to Computer Programming

23

Low-Level Languages
 Low-level code is more readable than binary

machine code, but not by much

 Every low-level instruction corresponds to a single
CPU operation

 More complex tasks require sequences of low-level
instructions which often appear together, but have
to be typed out individually

 With low-level code, the programmer has to manage
̶ memory manually, keeping track of memory, addresses etc..

University of Toronto

CSC108: Introduction to Computer Programming

24

High-Level Languages

 High-level languages were created to make programming
a simpler task for the end user

 Groups of low-level operations can be expressed
with a single high-level command

 Many high-level languages automate memory
management

 High-level languages are hardware independent

University of Toronto

CSC108: Introduction to Computer Programming

25

Example: A single instruction

 In binary:
̶ 110001110000011000001100000000000010110100000000

1000001100000110000011110000000000001010

 In Low-level code:
̶ MOV 45, registerA
̶ ADD registerA, 10

 In High-level code:
̶ 45 + 10

University of Toronto

CSC108: Introduction to Computer Programming

26

Compilers vs Interpreters

 There are two types of programs that read high level
code and convert it to low-level code:

1) Interpreters read the code one line at a time and
execute it on the fly, returning results as the
program is being processed.

2) Compilers take the entire file and convert it to
low-level code. Then, they hand it off to an executor
to actually run it.

University of Toronto

CSC108: Introduction to Computer Programming

27

Meet Python

 Python is a high-level language designed for
code readability and simplicity.

 It is an interpreted language, which means that
we can execute commands one at a time and see
the result instantly without compiling.

 It has an extensive library of helpful functions and
modules that programmers can use in their code.

University of Toronto

CSC108: Introduction to Computer Programming

28

Playing with Python

 There are many ways to write and run programs
with Python.

 The one we will use is called Wing and it’s an IDE
(Integrated Development Environment).

 Wing IDE 101 is installed on all CDF machines.

 Refer to the course website for detailed installation
instructions.

University of Toronto

CSC108: Introduction to Computer Programming

29

Python

University of Toronto

CSC108: Introduction to Computer Programming

30

Math

 The simplest way to experiment with the Python
shell is to use mathematical operations. Syntax and
order of operations is very similar to what we know
from math.

University of Toronto

CSC108: Introduction to Computer Programming

31

Operators and Operands

 An operator is a symbol that indicates a simple
operation (i.e. +, -, *, /)

 An operand is a value on which operations are
performed

 A combination of operators and operands that
evaluates to a single value is called an expression

University of Toronto

CSC108: Introduction to Computer Programming

32

Data Types in Python

 Python recognizes and distinguishes between many
different types of values.

 The distinction between data types is important
because:
1) different data types take up different amounts of

space in memory
2) different data types support different operations

University of Toronto

CSC108: Introduction to Computer Programming

33

Data Types in Python

University of Toronto

CSC108: Introduction to Computer Programming

34

Data Types in Python
 We can ask Python to give us the type of a

particular value:

>>> type(25)
<type 'int'>

>>> type(25.0)
<type 'float'>

>>> type(‘Hello World!’)
<type 'str'>

University of Toronto

CSC108: Introduction to Computer Programming

35

Operations With Data Types

 Different data types support different operations.

 Furthermore, certain operations mean different
things for different data types:
>>> 25 + 15
40
>>> ‘Hel’ + ’lo’
‘Hello’
>>> ’25’ * 4
‘25252525’

University of Toronto

CSC108: Introduction to Computer Programming

36

Operations With Data Types

 When both operands are of the same type, the
result of the operation will also be of that type.

 When the operands are different, one of two things
will happen:

1) If they both represent numbers, Python will
convert the less precise operand to the type of the
other and proceed
2) In all other cases, Python will raise an error

University of Toronto

CSC108: Introduction to Computer Programming

37

Quick Word on Errors

 ‘Python will raise an error’ means ‘Python will yell at
you when you type in something it can’t understand,
sometimes giving you a bit of useful information in
the process.’

 There are three types of errors that programmers can
make:

University of Toronto

CSC108: Introduction to Computer Programming

38

1) Syntax Errors
 A syntax error occurs when a program does not

conform to the structural and grammatical rules of
the programming language.

 In English you can get away with this:
the meaning of this sentence
understand you still will

 Python is not as forgiving:
>>> 4 3 +

These will be fairly common in your first programs…

University of Toronto

CSC108: Introduction to Computer Programming

39

2) Runtime Errors

 Runtime errors occur when something goes wrong
while the program is running. For instance, the user
tries to open a file that doesn’t exist or supplies the
wrong kind of value.

>>> ‘Hello’ + 9
>>> 45 / 0

University of Toronto

CSC108: Introduction to Computer Programming

40

3) Semantic Errors

 Semantic errors occur when the programmer has
given the wrong instructions, so the program does
what it was asked, but not what the programmer
intended.

>>> ’25’ + ’15’

 Semantic errors are evil because no language in the
world can tell that you've done something wrong.

University of Toronto

CSC108: Introduction to Computer Programming

41

Operations With Data Types

 When both operands are of the same type, the
result of the operation will also be of that type.

 When the operands are different, one of two things
will happen:

1) If they both represent numbers, Python will
convert the less precise operand to the type of the
other and proceed

2) In all other cases, Python will raise an error

University of Toronto

CSC108: Introduction to Computer Programming

42

Revisiting Division
 Given what we know about how Python handles

operations, what will be the result of the following:

>>> 15 / 3
5

 What about this:
>>> 17 / 3
5

University of Toronto

CSC108: Introduction to Computer Programming

43

Revisiting Division

 When both operands of a division are int values,
Python performs integer division. The result of
integer division is an integer, and so only the whole
quotient is returned.

 However, if at least one of the operands is a
float, Python performs floating-point division.

>>> 17.0 / 3
5.6666666666666667

University of Toronto

CSC108: Introduction to Computer Programming

44

Modulo (%)

 Python has an operator that lets you find the
remainder of an integer division. This operator is
called modulo (%) and looks like this:

>>> 17 % 3
2
>>>> 15 % 3
0

University of Toronto

CSC108: Introduction to Computer Programming

45

Variables

 So far, we’ve used the Python shell to do some
simple math, but:

1) we haven’t used the results we’ve obtained for anything

2) we haven’t stored anything in memory

University of Toronto

CSC108: Introduction to Computer Programming

46

Variables

 In computer programming, a variable is a name
that refers to a value.

 Variables allow programmers to store values, to
change them and to use them in later computations.

University of Toronto

CSC108: Introduction to Computer Programming

47

Assignment Statement

 A line of code that tells Python to do something is
called a statement.

 In Python, the assignment statement is used to
assign values to variables. It looks like this:

variable = expression

>>> x = 8
>>> x
8

University of Toronto

CSC108: Introduction to Computer Programming

48

Variables as Operands

 A variable can participate in an expression just like
any other value.

>>> x = 4
>>> 5 + x
9
>>> x = 7
>>> 5 + x
12

 As the variable changes, so does the result of the
expression.

University of Toronto

CSC108: Introduction to Computer Programming

49

Variable Types

 In Python, we can assign values of any type to a
variable.

>>> x = 4
>>> type(x)
<type ‘int’>

>>> x = ‘Hello’
>>> type(x)
<type ‘str’>

University of Toronto

CSC108: Introduction to Computer Programming

50

Variables

 In Python, the assignment operator (=) is used to
assign values to variables. It’s used in the following
format:

variable = expression

1. The expression on the RHS is evaluated and
stored in an available memory space

2. The address of that space is assigned to the
variable on the LHS

This part is important……………..

University of Toronto

CSC108: Introduction to Computer Programming

51

Computer Science vs Math

 There is a significant difference between what
= means in math and in Python.

 E.g. x = 4 + 9
̶ In math, it means equality:

“x is always equal to 4 + 9”

̶ In Python, it means assignment:
“The variable x now refers to the result of 4 + 9”

University of Toronto

CSC108: Introduction to Computer Programming

52

Computer Science vs Math

 Equality in math is binding and eternal. If x and y are
linked by x = y + 5, every time x changes, y has
to change also.

 Assignment in Python is a one-time deal

University of Toronto

CSC108: Introduction to Computer Programming

53

Computer Science vs Math

 Some things that work in math don’t work in Python:

4 + 9 = x

 Some things that work in Python don’t work in math:

x = x + 5
̶ This is the standard way to update a variable’s value.

University of Toronto

CSC108: Introduction to Computer Programming

54

Math Commands
 Python has useful commands for performing calculations.

Command name Description

abs(value) absolute value

ceil(value) rounds up

cos(value) cosine, in radians

floor(value) rounds down

log(value) logarithm, base e

log10(value) logarithm, base 10

max(value1, value2) larger of two values

min(value1, value2) smaller of two values

round(value) nearest whole number

sin(value) sine, in radians

sqrt(value) square root

University of Toronto

CSC108: Introduction to Computer Programming

55

print Command
 print : produces text output on the console.

 Syntax:
print "Message"
print Expression

̶ Prints the given text message or expression value on
the console, and moves the cursor down to the next
line.

print Item1, Item2, ..., ItemN
̶ Prints several messages and/or expressions on the

same line.

University of Toronto

CSC108: Introduction to Computer Programming

56

print Command – cont’d

 Examples:
print "Hello, world!"
age = 25
print "You have", 65 - age, "years until retirement"

Output:

Hello, world!
You have 40 years until retirement

University of Toronto

CSC108: Introduction to Computer Programming

57

Input Command

 input : Reads a number from user input.
̶ You can assign (store) the result of input into a

variable.
̶ Example:

age = input("How old are you? ")
print "Your age is", age
print "You have", 65 - age, "years until retirement"

Output:

How old are you? 53
Your age is 53
You have 12 years until retirement

University of Toronto

CSC108: Introduction to Computer Programming

58

E.g. The average of 5 numbers
 Problem:

Given five numbers, find their average.
̶ What’s the algorithm for solving this problem?
̶ And the program?

University of Toronto

CSC108: Introduction to Computer Programming

59

E.g. The maximum of 5 numbers
 Problem:

Given five numbers, find the largest number.
̶ What’s the algorithm for solving this problem?
̶ And the program?

University of Toronto

CSC108: Introduction to Computer Programming

60

if Statement

 if statement: Executes a group of statements only if a
certain condition is true. Otherwise, the statements are
skipped.

̶ Syntax:
if condition:

statements

 Example:
gpa = 3.4
if gpa > 2.0:

print "Your application is accepted."

University of Toronto

CSC108: Introduction to Computer Programming

61

Logical operators

 Relational operators results in a True or False result

 logical
operators

Operator Meaning Example Result

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 True

Operator Example Result

and 9 != 6 and 2 < 3 True

or 2 == 3 or -1 < 5 True

not not 7 > 0 False

University of Toronto

CSC108: Introduction to Computer Programming

62

AND Operator

 Let’s look at the relationship between the semantic and
logical operator known as the AND operator

 Consider:
If the car is fueled AND the engine works,

then the engine will start

AND means that both conditions must be true in order
for the conclusion to be true

University of Toronto

CSC108: Introduction to Computer Programming

63

OR Operator

 Another basic operator is the OR

 Consider:
If I have cash OR a credit card,

then I can pay the bill

 OR works such that the output is true, if either of the two
inputs is true

University of Toronto

CSC108: Introduction to Computer Programming

64

if/else Statement
 if/else statement: Executes one block of statements if a

certain condition is True, and a second block of
statements if it is False.
̶ Syntax:

if condition:
statements

else:
statements

 Example:
gpa = 1.4
if gpa > 2.0:

print "Welcome to Mars University!"
else:

print "Your application is denied."

University of Toronto

CSC108: Introduction to Computer Programming

65

Example

Let the user input 3 numbers

Find if the 3 numbers are the same, in ascending order or
descending order.

Also, find if the numbers are all less than 100

University of Toronto

CSC108: Introduction to Computer Programming

66

What have we learnt today?

 Variables & Data types

 Assignment statement

 Using input and print

 Using math commands (e.g. max)

 if statement

 Logical & Relational operators

University of Toronto

CSC108: Introduction to Computer Programming

67

This Week’s To Do List

 Check out the course website on Blackboard

 Find your CDF username and try to log into a lab
computer

 Install Python and Wing IDE
(http://www.wingware.com/downloads/wingide-101)

 Register for CodeLab

 Buy textbook

	CSC108: Introduction to Computer Programming��Lecture 1
	Welcome!
	Recommended Text Book
	Website
	Evaluation
	Labs (5%) and CodeLabs (5%)
	Assignments (30%)
	Quizzes (10%), Midterm (10%), Exam (40%)
	Administrative Notes
	Computing on Campus
	Getting Help
	Academic Offences
	In Class
	Slide Number 14
	Programs
	E.g. The average of 5 numbers
	Programming Languages
	Computers and Computation
	Computer Architecture
	Memory
	CPU
	Language Abstraction
	Low-Level Languages
	Low-Level Languages
	High-Level Languages
	Example: A single instruction
	Compilers vs Interpreters
	Meet Python
	Playing with Python
	Slide Number 30
	Math
	Operators and Operands
	Data Types in Python
	Data Types in Python
	Data Types in Python
	Operations With Data Types
	Operations With Data Types
	Quick Word on Errors
	1) Syntax Errors
	2) Runtime Errors
	3) Semantic Errors
	Operations With Data Types
	Revisiting Division
	Revisiting Division
	Modulo (%)
	Variables
	Variables
	Assignment Statement
	Variables as Operands
	Variable Types
	Variables
	Computer Science vs Math
	Computer Science vs Math
	Computer Science vs Math
	Math Commands
	print Command
	print Command – cont’d
	Input Command
	E.g. The average of 5 numbers
	E.g. The maximum of 5 numbers
	if Statement
	Logical operators
	AND Operator
	OR Operator
	if/else Statement
	Example
	What have we learnt today?
	This Week’s To Do List

