
University of Toronto

CSC108: Introduction to Computer
Programming

Lecture 10
Wael Aboulsaadat

Acknowledgment: these slides are based on material by: Velian Pandeliev, Diane Horton,
Michael Samozi, Jennifer Campbell, and Paul Gries from CS UoT

University of Toronto

CSC108: Introduction to Computer Programming

1

 Assignment 3 is due April 6, 2011….

 Since Quiz 3 was a bit too difficult for the time allotted, we
are making it out of 8 instead of 10. This makes Quiz 3
average 60%.

Announcements

University of Toronto

CSC108: Introduction to Computer Programming

2

Variable Scope
(revisited)

University of Toronto

CSC108: Introduction to Computer Programming

3

 From what we know of namespaces, variables declared
inside functions are destroyed after the function body
finishes.

 If there is a variable that is useful to the entire module, it
can be initialized outside of a function body and it will
become part of the global namespace of the module.

 We call these variables global, and they can be quite
useful, but there is a quirk of Python namespaces which
requires us to be careful when using them.

Global Variables

University of Toronto

CSC108: Introduction to Computer Programming

4

 What will this code do?
glb = 17
def change_glb():

glb = 3
def print_glb():

print glb
change_glb()
print_glb()
It will print 17, not 3.

 Why?

Global Variables

University of Toronto

CSC108: Introduction to Computer Programming

5

 Functions should be encapsulated: they should work with
the data they are given and return values as specified.

 It's generally not advisable for a function to change values
outside its namespace, especially global values that
someone else may want to use later.

 Therefore, by design in Python, any variable assigned to
in a local namespace is assumed to be a local and is
newly created in the local namespace.

Global Variables

University of Toronto

CSC108: Introduction to Computer Programming

6

 Python always looks for a name in the most local
namespace first.
glb = 17
def change_glb():

glb = 3
def print_glb():

print glb
change_glb()
print_glb()

Name spaces

University of Toronto

CSC108: Introduction to Computer Programming

7

 Notice that accessing a global variable doesn't generate
this pitfall.

 print_glb() works, retrieving and printing the global
variable.

 The global variable is only superseded if its name is
being assigned to in a local namespace.

 If a programmer is certain that (s)he wants to assign to a
global variable, (s)he can declare this explicitly using the
keyword global.

Global Variables

University of Toronto

CSC108: Introduction to Computer Programming

8

 The keyword global placed before a name in a function
specifies that that name should be looked for in the global
namespace , not in that function's local namespace:

glb = 17
def change_glb():

global glb
glb = 3

def print_glb():
print glb

change_glb()
print_glb()

 Will print 3, since global glb's value will be changed.

The Keyword global

University of Toronto

CSC108: Introduction to Computer Programming

9

 A global declaration makes Python start looking in the
global namespace.

glb = 17
def change_glb():

global glb
glb = 3

def print_glb():
print glb

change_glb()
print_glb()

Namespaces

University of Toronto

CSC108: Introduction to Computer Programming

10

Functions & parameter
passing (revisited)

University of Toronto

CSC108: Introduction to Computer Programming

11

 Assuming we define a function as follows

def testParamPassing(X,Y,Z):
print "X is", X
print "Y is", Y
print "Z is", Z

 What we have learnt is to call it as follows:
if __name__ == "__main__":

testParamPassing(10,20,30)

Parameter Passing Rules

University of Toronto

CSC108: Introduction to Computer Programming

12

 Assuming we define a function as follows

def testParamPassing(X,Y,Z):
print "X is", X
print "Y is", Y
print "Z is", Z

 What we have learnt is to call it as follows:
if __name__ == "__main__":

testParamPassing(10,20,30)

 The interpreter supports a 1-to-1 mapping of parameters

Parameter Passing Rules

University of Toronto

CSC108: Introduction to Computer Programming

13

 Python supports another mechanism in passing
parameters

def testParamPassing(X,Y,Z):
print "X is", X
print "Y is", Y
print "Z is", Z

 We can name the parameter and assign it a value while
calling a function:

if __name__ == "__main__":
testParamPassing(X=10,Y=20,Z=30)

Parameter Passing Rules

University of Toronto

CSC108: Introduction to Computer Programming

14

 Python supports another mechanism in passing
parameters

def testParamPassing(X,Y,Z):
print "X is", X
print "Y is", Y
print "Z is", Z

 We can name the parameter and assign it a value while
calling a function. The order does not matter anymore.

if __name__ == "__main__":
testParamPassing(X=10,Y=20,Z=30)
testParamPassing(Y=20,Z=30, X=10)
testParamPassing(Z=30,X=10,Y=20)

Parameter Passing Rules

University of Toronto

CSC108: Introduction to Computer Programming

15

 Recall that we can assign a default value to parameter

def testParamPassing(X,Y,Z=30):
print "X is", X
print "Y is", Y
print "Z is", Z

 Assigning a default value to a parameter saves us from
passing a value for that parameter

if __name__ == "__main__":
testParamPassing(10,20)

Parameter Passing Rules – with defaults

University of Toronto

CSC108: Introduction to Computer Programming

16

 Recall that we can assign a default value to parameter

def testParamPassing(X,Y,Z=30):
print "X is", X
print "Y is", Y
print "Z is", Z

 We can still using parameter names
if __name__ == "__main__":

testParamPassing(X=10,Y=20)
testParamPassing(Y=20, X=10)

Parameter Passing Rules – with defaults

University of Toronto

CSC108: Introduction to Computer Programming

17

Sorting
(revisited)

University of Toronto

CSC108: Introduction to Computer Programming

18

 In Selection Sort, we can think of our list as consisting of
two parts: a sorted part and an unsorted part.

 Initially, the sorted part is empty, as presumably the
entire list is unsorted. On every iteration, we:
- find the smallest number in the unsorted part of the list
- swap it with first number in the unsorted part of the list.
- This increases the size of the sorted list by 1.
- We repeat this process until the entire list is sorted.

Selection Sort

University of Toronto

CSC108: Introduction to Computer Programming

19

 Sorted part is yellow
Step 0: [5, 3, 4, 7, 9, 2, 1]
Step 1: [1, 3, 4, 7, 9, 2, 5]
Step 2: [1, 2, 4, 7, 9, 3, 5]
Step 3: [1, 2, 3, 7, 9, 4, 5]
Step 4: [1, 2, 3, 4, 9, 7, 5]
Step 5: [1, 2, 3, 4, 5, 7, 9]
Step 5: [1, 2, 3, 4, 5, 7, 9]
Step 6: [1, 2, 3, 4, 5, 7, 9]

Selection Sort Example

University of Toronto

CSC108: Introduction to Computer Programming

20

Selection Sort Code

University of Toronto

CSC108: Introduction to Computer Programming

21

This Week’s To Do List

 Go through lecture slides – make sure you try the code
snippets

 Try the lecture’s programs posted on course website

	CSC108: Introduction to Computer Programming��Lecture 10
	Announcements
	Slide Number 3
	Global Variables
	Global Variables
	Global Variables
	Name spaces
	Global Variables
	The Keyword global
	Namespaces
	Slide Number 11
	Parameter Passing Rules
	Parameter Passing Rules
	Parameter Passing Rules
	Parameter Passing Rules
	Parameter Passing Rules – with defaults
	Parameter Passing Rules – with defaults
	Slide Number 18
	Selection Sort
	Selection Sort Example
	Selection Sort Code
	This Week’s To Do List

