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 Assignment 3 is due April 6, 2011….

 Since Quiz 3 was a bit too difficult for the time allotted, we 
are making it out of 8 instead of 10. This makes Quiz 3 
average 60%.

Announcements
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Variable Scope
(revisited)
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 From what we know of namespaces, variables declared 
inside functions are destroyed after the function body 
finishes.

 If there is a variable that is useful to the entire module, it 
can be initialized outside of a function body and it will 
become part of the global namespace of the module.

 We call these variables global, and they can be quite 
useful, but there is a quirk of Python namespaces which  
requires us to be careful when using them.

Global Variables
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 What will this code do?
glb = 17
def change_glb():

glb = 3
def print_glb():

print glb
change_glb()
print_glb()
It will print 17, not 3.

 Why?

Global Variables
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 Functions should be encapsulated: they should work with 
the data they are given and return values as specified.

 It's generally not advisable for a function to change values 
outside its namespace, especially global values that 
someone else may want to use later.

 Therefore, by design in Python, any variable assigned to 
in a local namespace is assumed to be a local and is 
newly created in the local namespace.

Global Variables
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 Python always looks for a name in the most local
namespace first.
glb = 17
def change_glb():

glb = 3
def print_glb():

print glb
change_glb()
print_glb()

Name spaces
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 Notice that accessing a global variable doesn't generate 
this pitfall.

 print_glb() works, retrieving and printing the global 
variable.

 The global variable is only superseded if its name is
being assigned to in a local namespace.

 If a programmer is certain that (s)he wants to assign to a 
global variable, (s)he can declare this explicitly using the 
keyword global.

Global Variables
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 The keyword global placed before a name in a function 
specifies that that name should be looked for in the global 
namespace , not in that function's local namespace:

glb = 17
def change_glb():

global glb
glb = 3

def print_glb():
print glb

change_glb()
print_glb()

 Will print 3, since global glb's value will be changed.

The Keyword global
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 A global declaration makes Python start looking in the
global namespace.

glb = 17
def change_glb():

global glb
glb = 3

def print_glb():
print glb

change_glb()
print_glb()

Namespaces
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Functions & parameter 
passing (revisited)
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 Assuming we define a function as follows

def testParamPassing(X,Y,Z):
print "X is", X
print "Y is", Y
print "Z is", Z

 What we have learnt is to call it as follows:
if __name__ == "__main__":

testParamPassing(10,20,30)

Parameter Passing Rules
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 Assuming we define a function as follows

def testParamPassing(X,Y,Z):
print "X is", X
print "Y is", Y
print "Z is", Z

 What we have learnt is to call it as follows:
if __name__ == "__main__":

testParamPassing(10,20,30)

 The interpreter supports a 1-to-1 mapping of parameters

Parameter Passing Rules



University of Toronto

CSC108: Introduction to Computer Programming

13

 Python supports another mechanism in passing 
parameters

def testParamPassing(X,Y,Z):
print "X is", X
print "Y is", Y
print "Z is", Z

 We can name the parameter and assign it a value while 
calling a function:

if __name__ == "__main__":
testParamPassing(X=10,Y=20,Z=30)

Parameter Passing Rules
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 Python supports another mechanism in passing 
parameters

def testParamPassing(X,Y,Z):
print "X is", X
print "Y is", Y
print "Z is", Z

 We can name the parameter and assign it a value while 
calling a function. The order does not matter anymore.

if __name__ == "__main__":
testParamPassing(X=10,Y=20,Z=30)
testParamPassing(Y=20,Z=30, X=10)
testParamPassing(Z=30,X=10,Y=20)

Parameter Passing Rules
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 Recall that we can assign a default value to parameter 

def testParamPassing(X,Y,Z=30):
print "X is", X
print "Y is", Y
print "Z is", Z

 Assigning a default value to a parameter saves us from 
passing a value for that parameter

if __name__ == "__main__":
testParamPassing(10,20)

Parameter Passing Rules – with defaults
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 Recall that we can assign a default value to parameter 

def testParamPassing(X,Y,Z=30):
print "X is", X
print "Y is", Y
print "Z is", Z

 We can still using parameter names
if __name__ == "__main__":

testParamPassing(X=10,Y=20)
testParamPassing(Y=20, X=10)

Parameter Passing Rules – with defaults
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Sorting
(revisited)
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 In Selection Sort, we can think of our list as consisting of 
two parts: a sorted part and an unsorted part.

 Initially, the sorted part is empty, as presumably the
entire list is unsorted. On every iteration, we:
- find the smallest number in the unsorted part of the list
- swap it with first number in the unsorted part of the list.
- This increases the size of the sorted list by 1.
- We repeat this process until the entire list is sorted.

Selection Sort
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 Sorted part is yellow
Step 0: [5, 3, 4, 7, 9, 2, 1]
Step 1: [1, 3, 4, 7, 9, 2, 5]
Step 2: [1, 2, 4, 7, 9, 3, 5]
Step 3: [1, 2, 3, 7, 9, 4, 5]
Step 4: [1, 2, 3, 4, 9, 7, 5]
Step 5: [1, 2, 3, 4, 5, 7, 9]
Step 5: [1, 2, 3, 4, 5, 7, 9]
Step 6: [1, 2, 3, 4, 5, 7, 9]

Selection Sort Example
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Selection Sort Code
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This Week’s To Do List

 Go through lecture slides – make sure you try the code 
snippets

 Try the lecture’s programs posted on course website
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