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Recursion
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 A description of something that refers to itself is called a 
recursive definition.

 Have you had a teacher tell you that you can’t use a word 
in its own definition? This is a circular definition.

 In mathematics, recursion is frequently used. The most 
common example is the factorial:

For example, 5! = 5(4)(3)(2)(1), 
or

5! = 5(4!)

Recursive Definitions
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 In other words,

 Or

 This definition says that 0! is 1, while the factorial of any 
other number is that number times the factorial of one less 
than that number.

Recursive Definitions
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 Our definition is recursive, but definitely not 
circular. Consider 4!

̶ 4! = 4(4-1)! = 4(3!)

̶ What is 3!? We apply the definition again
4! = 4(3!) = 4[3(3-1)!] = 4(3)(2!)

̶ And so on…
4! = 4(3!) = 4(3)(2!) 

= 4(3)(2)(1!) 
= 4(3)(2)(1)(0!) 
= 4(3)(2)(1)(1) 
= 24

Recursive Definitions
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 Factorial is not circular because we eventually get 
to 0!, whose definition does not rely on the 
definition of factorial and is just 1. This is called a 
base case for the recursion.

 When the base case is encountered, we get a 
closed expression that can be directly computed.

Recursive Definitions
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 All good recursive definitions have these two key 
characteristics:
̶ There are one or more base cases for which no 

recursion is applied.
̶ One or more recursive case which eventually end up at 

one of the base cases.

 The simplest way for these two conditions to 
occur is for each recursion to act on a smaller
version of the original problem. A very small 
version of the original problem that can be solved 
without recursion becomes the base case.

Recursive Definitions
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 We’ve seen previously that factorial can be 
calculated using a loop accumulator.

 If factorial is written as a separate function:
def fact(n):

if n == 0:
return 1

else:
return n * fact(n-1)

Recursive Definitions
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 We’ve written a function that calls itself, a 
recursive function.

 The function first checks to see if we’re at the 
base case (n==0). If so, return 1. Otherwise, 
return the result of multiplying n by the factorial of 
n-1, fact(n-1).

Recursive Definitions
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Recursive Definitions
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Functions
(revisited)
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 The term 'first-class object' refers to an object which 
has the following important properties:
- can be stored in variables and data structures
- can be passed to and returned by a function

 In all programming languages, primitive data types (ints, 
floats, strings, etc.) are first-class since they conform to 
the above rules.

 In many of those, functions are not first-class. However, in 
Python functions are in fact first-class.

 What does this entail?

First-Class Objects
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 We've alluded to the fact that Python stores function 
names the same way it stores variable names.

 In a namespace, all Python really has is names that are
 connected to memory addresses (also called pointers).

 For immutable data, those addresses point to primitive
data objects like 4. For mutable data, they point to more 
complex objects, which may have pointers of their own

 For functions, addresses point to the memory space where 
the low-level commands of the function are stored.

Representing Functions
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 Moreover, it turns out that functions are in fact objects, 
meaning that they can be manipulated as such.

 For instance we can assign function names to other 
variables:

def even(i):
return i % 2 == 0

print even(3)
not_odd = even
print not_odd(3)

Functions as Variables



University of Toronto

CSC108: Introduction to Computer Programming

14

 We can pass function names to other functions as 
parameters:

def add(i,j):
return i + j

def multiply(i,j):
return i * j

add(3,5) # returns 8
multiply(3,5) # returns 15
def do(fxn, a, b):

return fxn(a,b)

do(add,3,5) # calls add, returns 8

Functions as Parameters
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 This is a varsity-level feature of Python that few 
programming languages share.

 Using functions as first-class objects (passing them
around, renaming them, etc.) affords us some great
flexibility when writing code.

 For instance, let's write a function that times the execution 
of a single-argument function and returns the time it took 
in seconds.

Functions as First-Class Objects
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import time
def runtime(f, arg):
'''f is a 1-argument function. arg is a suitable argument for 
f. Return the amount of time it takes to run f on arg.'''

before = time.clock()
f(arg)
after = time.clock()
return (after - before)

A Function Timer
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 For example, if we wanted to time this function to find 
which is faster of bubble or selection sort

 We could use:
print "%1.20f" % runtime(bubble_sort,[3,6,5,4,1])
print "%1.20f" % runtime(selection_sort,[3,6,5,4,1])

Using the Timer
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Data Structures
(revisited)
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 We have learnt the following data structures:

̶ List

̶ Tuple

̶ Dictionary

 The Type of the data structure you use is dependent on 
the functionality required.

Data structures
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Which data structure should be used here?
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Which data structure should be used here?
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Which data structure should be used here?
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Which data structure should be used here?
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This Week’s To Do List

 Go through lecture slides – make sure you try the code 
snippets

 Try the lecture’s programs posted on course website
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