
University of Toronto

CSC108: Introduction to Computer 
Programming

Lecture 11
Wael Aboulsaadat

Acknowledgment: these slides are based on material by: Velian Pandeliev, Diane Horton, 
Michael Samozi, Jennifer Campbell, and Paul Gries from CS UoT



University of Toronto

CSC108: Introduction to Computer Programming

1

Recursion



University of Toronto

CSC108: Introduction to Computer Programming

2

 A description of something that refers to itself is called a 
recursive definition.

 Have you had a teacher tell you that you can’t use a word 
in its own definition? This is a circular definition.

 In mathematics, recursion is frequently used. The most 
common example is the factorial:

For example, 5! = 5(4)(3)(2)(1), 
or

5! = 5(4!)

Recursive Definitions



University of Toronto

CSC108: Introduction to Computer Programming

3

 In other words,

 Or

 This definition says that 0! is 1, while the factorial of any 
other number is that number times the factorial of one less 
than that number.

Recursive Definitions



University of Toronto

CSC108: Introduction to Computer Programming

4

 Our definition is recursive, but definitely not 
circular. Consider 4!

̶ 4! = 4(4-1)! = 4(3!)

̶ What is 3!? We apply the definition again
4! = 4(3!) = 4[3(3-1)!] = 4(3)(2!)

̶ And so on…
4! = 4(3!) = 4(3)(2!) 

= 4(3)(2)(1!) 
= 4(3)(2)(1)(0!) 
= 4(3)(2)(1)(1) 
= 24

Recursive Definitions



University of Toronto

CSC108: Introduction to Computer Programming

5

 Factorial is not circular because we eventually get 
to 0!, whose definition does not rely on the 
definition of factorial and is just 1. This is called a 
base case for the recursion.

 When the base case is encountered, we get a 
closed expression that can be directly computed.

Recursive Definitions



University of Toronto

CSC108: Introduction to Computer Programming

6

 All good recursive definitions have these two key 
characteristics:
̶ There are one or more base cases for which no 

recursion is applied.
̶ One or more recursive case which eventually end up at 

one of the base cases.

 The simplest way for these two conditions to 
occur is for each recursion to act on a smaller
version of the original problem. A very small 
version of the original problem that can be solved 
without recursion becomes the base case.

Recursive Definitions



University of Toronto

CSC108: Introduction to Computer Programming

7

 We’ve seen previously that factorial can be 
calculated using a loop accumulator.

 If factorial is written as a separate function:
def fact(n):

if n == 0:
return 1

else:
return n * fact(n-1)

Recursive Definitions



University of Toronto

CSC108: Introduction to Computer Programming

8

 We’ve written a function that calls itself, a 
recursive function.

 The function first checks to see if we’re at the 
base case (n==0). If so, return 1. Otherwise, 
return the result of multiplying n by the factorial of 
n-1, fact(n-1).

Recursive Definitions



University of Toronto

CSC108: Introduction to Computer Programming

9

Recursive Definitions



University of Toronto

CSC108: Introduction to Computer Programming

10

Functions
(revisited)



University of Toronto

CSC108: Introduction to Computer Programming

11

 The term 'first-class object' refers to an object which 
has the following important properties:
- can be stored in variables and data structures
- can be passed to and returned by a function

 In all programming languages, primitive data types (ints, 
floats, strings, etc.) are first-class since they conform to 
the above rules.

 In many of those, functions are not first-class. However, in 
Python functions are in fact first-class.

 What does this entail?

First-Class Objects



University of Toronto

CSC108: Introduction to Computer Programming

12

 We've alluded to the fact that Python stores function 
names the same way it stores variable names.

 In a namespace, all Python really has is names that are
 connected to memory addresses (also called pointers).

 For immutable data, those addresses point to primitive
data objects like 4. For mutable data, they point to more 
complex objects, which may have pointers of their own

 For functions, addresses point to the memory space where 
the low-level commands of the function are stored.

Representing Functions



University of Toronto

CSC108: Introduction to Computer Programming

13

 Moreover, it turns out that functions are in fact objects, 
meaning that they can be manipulated as such.

 For instance we can assign function names to other 
variables:

def even(i):
return i % 2 == 0

print even(3)
not_odd = even
print not_odd(3)

Functions as Variables



University of Toronto

CSC108: Introduction to Computer Programming

14

 We can pass function names to other functions as 
parameters:

def add(i,j):
return i + j

def multiply(i,j):
return i * j

add(3,5) # returns 8
multiply(3,5) # returns 15
def do(fxn, a, b):

return fxn(a,b)

do(add,3,5) # calls add, returns 8

Functions as Parameters



University of Toronto

CSC108: Introduction to Computer Programming

15

 This is a varsity-level feature of Python that few 
programming languages share.

 Using functions as first-class objects (passing them
around, renaming them, etc.) affords us some great
flexibility when writing code.

 For instance, let's write a function that times the execution 
of a single-argument function and returns the time it took 
in seconds.

Functions as First-Class Objects



University of Toronto

CSC108: Introduction to Computer Programming

16

import time
def runtime(f, arg):
'''f is a 1-argument function. arg is a suitable argument for 
f. Return the amount of time it takes to run f on arg.'''

before = time.clock()
f(arg)
after = time.clock()
return (after - before)

A Function Timer



University of Toronto

CSC108: Introduction to Computer Programming

17

 For example, if we wanted to time this function to find 
which is faster of bubble or selection sort

 We could use:
print "%1.20f" % runtime(bubble_sort,[3,6,5,4,1])
print "%1.20f" % runtime(selection_sort,[3,6,5,4,1])

Using the Timer



University of Toronto

CSC108: Introduction to Computer Programming

18

Data Structures
(revisited)



University of Toronto

CSC108: Introduction to Computer Programming

19

 We have learnt the following data structures:

̶ List

̶ Tuple

̶ Dictionary

 The Type of the data structure you use is dependent on 
the functionality required.

Data structures



University of Toronto

CSC108: Introduction to Computer Programming

20

Which data structure should be used here?



University of Toronto

CSC108: Introduction to Computer Programming

21

Which data structure should be used here?



University of Toronto

CSC108: Introduction to Computer Programming

22

Which data structure should be used here?



University of Toronto

CSC108: Introduction to Computer Programming

23

Which data structure should be used here?



University of Toronto

CSC108: Introduction to Computer Programming

24

This Week’s To Do List

 Go through lecture slides – make sure you try the code 
snippets

 Try the lecture’s programs posted on course website


	CSC108: Introduction to Computer Programming��Lecture 11
	Slide Number 2
	Recursive Definitions
	Recursive Definitions
	Recursive Definitions
	Recursive Definitions
	Recursive Definitions
	Recursive Definitions
	Recursive Definitions
	Recursive Definitions
	Slide Number 11
	First-Class Objects
	Representing Functions
	Functions as Variables
	Functions as Parameters
	Functions as First-Class Objects
	A Function Timer
	Using the Timer
	Slide Number 19
	Data structures
	Which data structure should be used here?
	Which data structure should be used here?
	Which data structure should be used here?
	Which data structure should be used here?
	This Week’s To Do List

