
University of Toronto

CSC108: Introduction to Computer
Programming

Lecture 2
Wael Aboulsaadat

Acknowledgment: these slides are based on material by: Velian Pandeliev, Diane Horton,
Michael Samozi, Jennifer Campbell, and Paul Gries from CS UoT

University of Toronto

CSC108: Introduction to Computer Programming

1

Recap of Lecture 1

 Variables & Types
 Assignment Statement
 Logical & Mathematical Operators
 if statement
 print
 input

 Example code

University of Toronto

CSC108: Introduction to Computer Programming

2

Variables revisited

 Every programming language has a list of reserved
keywords that are used to parse the program correctly.

 No variable name can be the same as one of these words

University of Toronto

CSC108: Introduction to Computer Programming

3

Expressions revisited: Truth Tables

University of Toronto

CSC108: Introduction to Computer Programming

4

Expressions revisited: brackets

 Use brackets to force precedence of evaluation

 Examples:
2 + 3 * 4

vs.
(2 + 3) * 4

10.0 – 4.0 / 2.0 / 22.0 + 19.0 * 2.0
vs.

(10.0 – (4.0 / 2.0 / 22.0) + 19.0) * 2.0
vs.

10.0 – 4.0 / ((2.0 / 22.0) + 19.0) * 2.0

University of Toronto

CSC108: Introduction to Computer Programming

5

If-else revisited: chains

 Multiple conditions can be chained with
elif ("else if"):

if condition:
statements

elif condition:
statements

else:
statements

University of Toronto

CSC108: Introduction to Computer Programming

6

Example: temperature warning

University of Toronto

CSC108: Introduction to Computer Programming

7

Example: temperature warning

celsius = input("What is the Celsius temperature? ")
fahrenheit = 9 / 5 * celsius + 32
print("The temperature is", fahrenheit, "degrees
fahrenheit.")
if fahrenheit >= 90:

print("It's really hot out there, be careful!")
if fahrenheit <= 30:

print("Brrrrr. Be sure to dress warmly")

University of Toronto

CSC108: Introduction to Computer Programming

8

Functions

 Basic building block of any program

 A typical python program consists of a set of functions
working together to achieve some goal

University of Toronto

CSC108: Introduction to Computer Programming

9

Functions vs machines
 Similarities between a function and a machine !

̶ Machine has an engine
̶ Machine is initialized with input
̶ Machine produces an output
̶ Machine has a predetermined

way to activate

function has an engine (body)
function takes input (input parameters)
function produces an output (return val)
function has an activation mechanism
(invoke/call)

?

University of Toronto

CSC108: Introduction to Computer Programming

10

Functions vs machines
 Similarities between a function and a machine !

̶ Machine has an engine
̶ Machine is initialized with input
̶ Machine produces an output
̶ Machine has a predetermined

way to activate

 Differences between a function and a machine
̶ Machine does not stop unless you deactivate while function stops

after the last line
̶ Machines are often independent of each other while functions are

chained…

function has an engine (body)
function takes input (input parameters)
function produces an output (return val)
function has an activation mechanism
(invoke/call)

University of Toronto

CSC108: Introduction to Computer Programming

11

Function Syntax

def function-name(Parameter1,
Parameter2 , etc…):

statement
statement
statement
statement

return value

inputs
nameDefining a function

output

Function body
(the engine)

Function
header

Tab not space!

University of Toronto

CSC108: Introduction to Computer Programming

12

Function Example

def cube(X):
Product = X * X * X

return Product
…
…
…

inputname

output

University of Toronto

CSC108: Introduction to Computer Programming

13

How do you get a function to work?

def cube(X):
Product = X * X * X

return Product
…
…
…
Result = cube(20)

inputname

output

Call it and it will execute!

University of Toronto

CSC108: Introduction to Computer Programming

14

Function Parameter mapping
 When a function is called, the parameters are

mapped 1-to-1 to arguments

 Example
def average(x,y,z)

avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average(num1, num2, num3)
print “the average of 3 numbers is”, res

University of Toronto

CSC108: Introduction to Computer Programming

15

Function Parameter mapping
 When a function is called, the parameters are

mapped 1-to-1 to arguments

 Example
def average(x,y,z)

avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average(num1, num2, num3)
print “the average of 3 numbers is”, res

University of Toronto

CSC108: Introduction to Computer Programming

16

Function Return
 When a function is called, the parameters are

mapped 1-to-1 to arguments

 Example
def average(x,y,z)

avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res = average(num1, num2, num3)
print “the average of 3 numbers is”, res

University of Toronto

CSC108: Introduction to Computer Programming

17

Functions and Math
 In math, we have a concept of a function as a

relationship between two quantities.

 It is possible to model a mathematical function using
a Python function:

Math:
f(x) = 2x + 5

Python:
def f(x):

return 2 * x + 5

University of Toronto

CSC108: Introduction to Computer Programming

18

 Define a new function using def

 Argument names follow in parentheses
̶ No types for either return or parameters

 Finish at any time with return
̶ Functions without return statements return None

Summary of Python Rules for Functions

University of Toronto

CSC108: Introduction to Computer Programming

19

 A python program is interpreted one line at a
time

 So far, we've been writing programs that follow
a rigidly defined sequence of execution:

statement 1
statement 2
statement 3
statement 4

Functions and Execution Flow

University of Toronto

CSC108: Introduction to Computer Programming

20

 A function call causes the execution to transfer
to the first line of code inside the function.

 After a functions finishes the next line after
function call is executed

Functions and Execution Flow

University of Toronto

CSC108: Introduction to Computer Programming

21

 Example

def average(x,y,z):
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average(num1, num2, num3)
print “the average of 3 numbers is”, res

Functions and Execution Flow

1

University of Toronto

CSC108: Introduction to Computer Programming

22

 Example

def average(x,y,z)
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average(num1, num2, num3)
print “the average of 3 numbers is”, res

Functions and Execution Flow

1

2

University of Toronto

CSC108: Introduction to Computer Programming

23

 Example

def average(x,y,z)
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average(num1, num2, num3)
print “the average of 3 numbers is”, res

Functions and Execution Flow

1

2

3

University of Toronto

CSC108: Introduction to Computer Programming

24

 Example

def average(x,y,z)
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average(num1, num2, num3)
print “the average of 3 numbers is”, res

Functions and Execution Flow

1

2

3

4

University of Toronto

CSC108: Introduction to Computer Programming

25

 Example

def average(x,y,z)
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average(num1, num2, num3)
print “the average of 3 numbers is”, res

Functions and Execution Flow

1

2

3

4

5

University of Toronto

CSC108: Introduction to Computer Programming

26

 Example

def average(x,y,z)
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average(num1, num2, num3)
print “the average of 3 numbers is”, res

Functions and Execution Flow

1

2

3

4

5

6

University of Toronto

CSC108: Introduction to Computer Programming

27

 Example

def average(x,y,z)
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average(num1, num2, num3)
print “the average of 3 numbers is”, res

Functions and Execution Flow

1

2

3

4

7

5

6

University of Toronto

CSC108: Introduction to Computer Programming

28

 Variables defined outside functions are global
 Example

x = 100
def New_Value(param):

product = param * x
return product

y = New_Value (9)
print “new value”, y, “ is obtained by multiplying by
“, x

Global Variables and Functions

University of Toronto

CSC108: Introduction to Computer Programming

29

 Variables created in functions are local to the
function

 Example
def New_Value(param):

x = 100
product = param * x
return product

y = New_Value (9)
print “new value”, y, “ is obtained by multiplying by
“, x

Local Variables in Functions

University of Toronto

CSC108: Introduction to Computer Programming

30

 You can have a function call inside a function call.
This is called nesting

 Example
def f(x):

return 2 * x + 5

def g(x):
return x * 2

n=f(g(6))  m = g(6)
n = f(m)

Nested Function Calls

University of Toronto

CSC108: Introduction to Computer Programming

31

Where is the start of the program?

 Mixing code not placed in functions and functions makes
the program hard to read!
̶ Example:

 Python has a way to mark the start of a program
if __name__ == '__main__':

University of Toronto

CSC108: Introduction to Computer Programming

32

Modules: python program files .py

 Python programs are saved in .py files, which are
plain text files (you can open them in any text editor)

University of Toronto

CSC108: Introduction to Computer Programming

33

Modules

 Modules are additional pieces of code that
further extend Python’s functionality

 A module typically has a specific function
̶ additional math functions, databases, network…

 Python comes with many useful modules

University of Toronto

CSC108: Introduction to Computer Programming

34

Modules: importing

 Modules are accessed using import
import somefile
from somefile import *
from somefile import subset

 Modules can have subsets of functions
̶ os.path is a subset within os

 Modules are then addressed by
modulename.function()
̶ filename = os.path.splitext("points.txt")

University of Toronto

CSC108: Introduction to Computer Programming

35

Built-in Functions in Python

 Many popular functions already coded for you

 http://docs.python.org/library/functions.html

http://docs.python.org/library/functions.html�

University of Toronto

CSC108: Introduction to Computer Programming

36

Type Conversion

 Some built-in functions allow you to convert between data
types:

University of Toronto

CSC108: Introduction to Computer Programming

37

Type conversion & raw_input

 There's a built-in function that allows a Python program to
ask for data from the user before continuing:

raw_input(prompt_string)

 The result of a raw_input() call is a string which can be
assigned to a variable.

University of Toronto

CSC108: Introduction to Computer Programming

38

Getting help
 You can find out what a function does by using

another built-in, help(functionname)

University of Toronto

CSC108: Introduction to Computer Programming

39

Comments: making your programs
understandable

 A comment is a plain English note inserted into a
piece of code to make it more readable.

 In order not to try to execute comments, Python will
ignore any line that starts with a #.

 Comments should be used to explain what your
code does, for any piece of code whose purpose isn't
immediately obvious.

University of Toronto

CSC108: Introduction to Computer Programming

40

What have we learnt today?

 Functions

 Type conversion & input

 Comments

University of Toronto

CSC108: Introduction to Computer Programming

41

This Week’s To Do List

 Go through lecture slides – make sure you try the code
snippets

 Try the lecture’s programs posted on course website

	CSC108: Introduction to Computer Programming��Lecture 2
	Recap of Lecture 1
	Variables revisited
	Expressions revisited: Truth Tables
	Expressions revisited: brackets
	If-else revisited: chains
	Example: temperature warning
	Example: temperature warning
	Functions
	Functions vs machines
	Functions vs machines
	Function Syntax
	Function Example
	How do you get a function to work?
	Function Parameter mapping
	Function Parameter mapping
	Function Return
	Functions and Math
	Summary of Python Rules for Functions
	Functions and Execution Flow
	Functions and Execution Flow
	Functions and Execution Flow
	Functions and Execution Flow
	Functions and Execution Flow
	Functions and Execution Flow
	Functions and Execution Flow
	Functions and Execution Flow
	Functions and Execution Flow
	Global Variables and Functions
	Local Variables in Functions
	Nested Function Calls
	Where is the start of the program?
	Modules: python program files .py
	Modules
	Modules: importing
	Built-in Functions in Python
	Type Conversion
	Type conversion & raw_input
	Getting help
	Comments: making your programs understandable
	What have we learnt today?
	This Week’s To Do List

