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Recap of Lecture 1

 Variables & Types
 Assignment Statement
 Logical & Mathematical Operators
 if statement
 print
 input 

 Example code
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Variables revisited

 Every programming language has a list of reserved 
keywords that are used to parse the program correctly.

 No variable name can be the same as one of these words
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Expressions revisited: Truth Tables
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Expressions revisited: brackets

 Use brackets to force precedence of evaluation

 Examples:
2 + 3 * 4

vs.   
(2 + 3) * 4

10.0 – 4.0  /  2.0 / 22.0 + 19.0 * 2.0
vs. 

(10.0 – (4.0  / 2.0 / 22.0 ) + 19.0 ) * 2.0
vs. 

10.0 – 4.0  / ( (2.0 / 22.0 ) + 19.0) * 2.0
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If-else revisited: chains

 Multiple conditions can be chained with 
elif ("else if"):

if condition:
statements

elif condition:
statements

else:
statements
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Example: temperature warning
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Example: temperature warning

celsius = input("What is the Celsius temperature? ")
fahrenheit = 9 / 5 * celsius + 32
print("The temperature is", fahrenheit, "degrees 
fahrenheit.")
if fahrenheit >= 90:

print("It's really hot out there, be careful!")
if fahrenheit <= 30:

print("Brrrrr. Be sure to dress warmly")
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Functions

 Basic building block of any program

 A typical python program consists of a set of functions 
working together to achieve some goal
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Functions vs machines 
 Similarities between a function and a machine ! 

̶ Machine has an engine 
̶ Machine is initialized with input
̶ Machine produces an output
̶ Machine has a predetermined 

way to activate

function has an engine (body)
function takes input (input parameters)
function produces an output (return val)
function has an activation mechanism
(invoke/call)

?
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Functions vs machines 
 Similarities between a function and a machine ! 

̶ Machine has an engine 
̶ Machine is initialized with input
̶ Machine produces an output
̶ Machine has a predetermined 

way to activate

 Differences between a function and a machine
̶ Machine does not stop unless you deactivate while function stops 

after the last line
̶ Machines are often independent of each other while functions are 

chained…

function has an engine (body)
function takes input (input parameters)
function produces an output (return val)
function has an activation mechanism
(invoke/call)
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Function Syntax

def function-name(Parameter1, 
Parameter2 , etc…      ):

statement
statement
statement
statement

return value

inputs
nameDefining a function

output

Function body 
(the engine)

Function 
header

Tab not space!
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Function Example

def cube( X   ):
Product = X * X * X

return Product
…
…
…

inputname

output
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How do you get a function to work?

def cube( X   ):
Product = X * X * X

return Product
…
…
…
Result = cube( 20 )

inputname

output

Call it and it will execute!
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Function Parameter mapping
 When a function is called, the parameters are 

mapped 1-to-1 to arguments

 Example
def average(x,y,z)

avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average( num1, num2, num3 )
print “the average of 3 numbers is”, res
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Function Parameter mapping
 When a function is called, the parameters are 

mapped 1-to-1 to arguments

 Example
def average(x,y,z)

avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average( num1, num2, num3 )
print “the average of 3 numbers is”, res
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Function Return
 When a function is called, the parameters are 

mapped 1-to-1 to arguments

 Example
def average(x,y,z)

avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res = average( num1, num2, num3 )
print “the average of 3 numbers is”, res
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Functions and Math
 In math, we have a concept of a function as a

relationship between two quantities.

 It is possible to model a mathematical function using
a Python function:

Math:
f(x) = 2x + 5

Python:
def f(x):

return 2 * x + 5
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 Define a new function using def

 Argument names follow in parentheses
̶ No types for either return or parameters

 Finish at any time with return
̶ Functions without return statements return None

Summary of Python Rules for Functions
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 A python program is interpreted one line at a 
time

 So far, we've been writing programs that follow 
a rigidly defined sequence of execution:

statement 1
statement 2
statement 3
statement 4

Functions and Execution Flow
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 A function call causes the execution to transfer 
to the first line of code inside the function.

 After a functions finishes the next line after 
function call is executed

Functions and Execution Flow
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 Example

def average(x,y,z):
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average( num1, num2, num3 )
print “the average of 3 numbers is”, res

Functions and Execution Flow

1
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 Example

def average(x,y,z)
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average( num1, num2, num3 )
print “the average of 3 numbers is”, res

Functions and Execution Flow

1

2
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 Example

def average(x,y,z)
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average( num1, num2, num3 )
print “the average of 3 numbers is”, res

Functions and Execution Flow

1

2

3
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 Example

def average(x,y,z)
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average( num1, num2, num3 )
print “the average of 3 numbers is”, res

Functions and Execution Flow

1

2

3

4
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 Example

def average(x,y,z)
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average( num1, num2, num3 )
print “the average of 3 numbers is”, res

Functions and Execution Flow
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2

3

4
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 Example

def average(x,y,z)
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average( num1, num2, num3 )
print “the average of 3 numbers is”, res

Functions and Execution Flow
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 Example

def average(x,y,z)
avg = (x + y + z) / 3.0
return avg

num1 = input(“ Enter number 1”)
num2 = input(“ Enter number 2”)
num3 = input(“ Enter number 3”)
res= average( num1, num2, num3 )
print “the average of 3 numbers is”, res

Functions and Execution Flow

1

2

3

4

7

5

6
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 Variables defined outside functions are global
 Example

x = 100
def New_Value(param):

product = param * x
return product 

y = New_Value (9)
print “new value”, y, “ is obtained by multiplying by  
“, x

Global Variables and Functions
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 Variables created in functions are local to the 
function

 Example
def New_Value(param):

x = 100
product = param * x
return product 

y = New_Value (9)
print “new value”, y, “ is obtained by multiplying by  
“, x

Local Variables in Functions
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 You can have a function call inside a function call. 
This is called nesting

 Example
def f(x):

return 2 * x + 5

def g(x):
return x * 2

n=f(g(6))  m = g(6)
n  = f(m)

Nested Function Calls
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Where is the start of the program?

 Mixing code not placed in functions and functions makes 
the program hard to read! 
̶ Example: 

 Python has a way to mark the start of a program
if __name__ == '__main__':
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Modules: python program files .py

 Python programs are saved in .py files, which are
plain text files (you can open them in any text editor)
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Modules

 Modules are additional pieces of code that 
further extend Python’s functionality

 A module typically has a specific function
̶ additional math functions, databases, network…

 Python comes with many useful modules
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Modules: importing 

 Modules are accessed using import
import somefile
from somefile import *
from somefile import subset

 Modules can have subsets of functions 
̶ os.path is a subset within os

 Modules are then addressed by 
modulename.function()
̶ filename = os.path.splitext("points.txt")
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Built-in Functions in Python

 Many popular functions already coded for you

 http://docs.python.org/library/functions.html

http://docs.python.org/library/functions.html�
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Type Conversion

 Some built-in functions allow you to convert between data 
types: 
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Type conversion & raw_input

 There's a built-in function that allows a Python program to 
ask for data from the user before continuing:

raw_input(prompt_string)

 The result of a raw_input() call is a string which can be 
assigned to a variable.
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Getting help
 You can find out what a function does by using

another built-in, help(functionname)
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Comments: making your programs 
understandable

 A comment is a plain English note inserted into a 
piece of code to make it more readable.

 In order not to try to execute comments, Python will 
ignore any line that starts with a #.

 Comments should be used to explain what your
code does, for any piece of code whose purpose isn't
immediately obvious.
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What have we learnt today?

 Functions

 Type conversion & input

 Comments
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This Week’s To Do List

 Go through lecture slides – make sure you try the code 
snippets

 Try the lecture’s programs posted on course website
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