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Announcements

 Quiz average is 88%

 Solutions will be posted. 

 Re-mark requests are due a week from today.

 Quiz 2 next Thursday 
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What have we learnt up till now?

 Variables 
 Logical & Mathematical Operators
 Assignment Statement
 Types & Type conversion
 if/else Statement
 print
 input & raw_input
 Functions
 Docstrings
 while loops
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Functions (revisited)
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print vs return
 print and return do very different things:

 print is used to display information to the user by 
outputting it to the screen

 print can be used anywhere, as many times as is
needed

 print gives information only to the user, it doesn't
make it available to the programmer for future use
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print vs return
 print and return do very different things:

 return is used to extract a value from a function
for further use inside a program (in fact, it's the
only way to extract a value from a function)

 return only appears at the end of a function body 

 return passes information to other parts of the
program, and does not make it available to the user
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print vs return
 Write a function that computes the sum of all

integers between 1 and a given number (inclusive).

Algorithm:
1) make a variable to keep track of the sum
2) starting at 1, add the integer to the sum and

increment it by 1
3) repeat Step 2 until you have added the given

number
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print vs return
def sum_range(num):

sum = 0
curr_number = 1
while curr_number <= num:

sum = sum + curr_number
curr_number = curr_number + 1

 Now what? Do we print? Do we return? The instructions 
didn't specify.

 When in doubt, use the more general statement, the
statement that lets the programmer decide what to
do next: use return.
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print vs return
def sum_range(num):

sum = 0
curr_number = 1
while curr_number <= num:

sum = sum + curr_number
curr_number = curr_number + 1

return sum

 This makes sense also because the function itself 
shouldn't know or care where num came from, or what 
the intended use of the sum is.
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Variables (revisited)
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Variable Scope
 What does this program do?

def f():
t = 5
print t

x = 9
print x
f()
print t
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Variable Scope
 What about this one?

def f():
t = 5
print x

x = 9
print x
f()
print t



University of Toronto

CSC108: Introduction to Computer Programming

12

Namespaces
 In Python, the structure that keeps track of the names 

Python knows is called a namespace.

 Namespaces contain names associated with variables, 
functions, imported modules, etc.

 Python programs have multiple namespaces, meaning
that they store names in several different places.

 This matters because the method Python uses to look for 
names can affect the scope of your variables: which 
parts of your code 'know' about them
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Namespaces
 At the lowest level of every Python program there's

a built-in namespace, which automatically contains
the names of all available built-in functions.

 When the program starts, a global namespace is 
created to keep track of global variables.

 Finally, a new local namespace is created every time
a function body is executed. It contains only variables 
local to that function (such as parameters).
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Namespaces
 Local namespaces are destroyed when the function

body exits. 

 Since function bodies can contain other function 
definitions, namespaces can contain other nested local 
namespaces.
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Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2
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Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

Global namespace:
f (function)

Built-in namespace:
abs (function)
….
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Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

Global namespace:
f (function)
x = 9 

Built-in namespace:
abs (function)
….
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Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

f() namespace:
t = 5

Global namespace:
f (function)
x = 9 

Built-in namespace:
abs (function)
….
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Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

f() namespace:
t = 5
g (function)

Global namespace:
f (function)
x = 9 

Built-in namespace:
abs (function)
….
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Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

g() namespace:
s  = 3

f() namespace:
t = 5
g (function)

Global namespace:
x = 9
f (function) 

Built-in namespace:
abs (function)
….
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Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

g() namespace:
s  = 3
t   = 4

f() namespace:
t = 5
g (function)

Global namespace:
x = 9
f (function) 

Built-in namespace:
abs (function)
….
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Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

f() namespace:
t = 5
g (function) m = 10

Global namespace:
x = 9
f (function) 

Built-in namespace:
abs (function)
….

Namespace
erased
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Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

Global namespace:
x = 9
f (function)        y = 11

Built-in namespace:
abs (function)
….

Namespace
erased

Namespace
erased
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Consquences

1) If you want to hold on to a local variable's value, you 
have to make the function return it

2) A local namespace cannot change the values of more 
global variables

3) A variable in a local namespace will 'hide' variables of the 
same name in more global namespaces

4) Namespaces can get a little tricky:
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Tricky namespaces

def tricky():
print x
x = 5

x = 4
tricky()

 Use different variable names.
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Strings (revisited)
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Strings
 A sequence of characters in Python is called a string.

 A string is how Python represents text:

'Hello World'

"Dear auntie"

"123 is 321"
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String formatting
 We can write better than

print "The sum of", w, ","x,",",y,"and",z,"is",sum,". "
Python has a way to specify where in a string you'd like a 
value to appear, and in what format.

 If x is an integer, instead of using:
print "You have", x, "dollars"

We can use:
print "You have %d dollars " % x

 %d means "Insert the value of the variable I give you
here, and format it as an integer"
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Format Placeholder
 %d displays the value as an integer

 %f displays the value as a floating-point decimal

 %f.2  displays the value as a floating-point decimal
accurate (and padded) to 2 decimal places

 %s displays the value as a string of characters
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Multiple Variables
 To specify multiple variables with placeholders, you have 

to separate them with commas and enclose them in 
parentheses after the %:

dollars = 4
cents   = 35
print "You have %d dollars and %d cents" %

(dollars, cents)
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New Line 
 In Python, you can insert a new line in the middle of

a string by using \n:
print "Sincerely,\nB. Pitt "

 You can break up a line that's too long (over 80 
characters) into multiple lines with \:

print "When I was a little girl,\
Barbara Stanwick and I used to dance "

 For expressions:  
return (number_of_generals *

number_of_soldiers_per_general)
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String Comparison
 Comparison operators apply to strings.

 In the case of strings, a 'greater' string is one which is 
further down the list in alphabetical order than a 'lesser' 
string.
>>> 'Alice' < 'Zimbabwe'
True
>>> 'Timmy' > 'Tommy'
False
>>> 'Timmy' < 'timmy'
True
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String Comparison
 ASCII Table & codes
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Special Strings
 There are several special characters that can be 

represented inside strings:
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Strings Can Be Sliced
 What if we wanted a string representing all the characters 

of 'Hello!' except the first?

 We can slice (or ask for substrings of) a string using 
the following notation:

string[start:end]
̶ start and end are both indices within the string (which could be 

negative).

 The character at position start is included, but the 
character at position end is not! start and end are both 
optional.
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for loop (revisited)
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For loop 
 Unlike the while loop which checks the status of a 

condition before it runs, the for loop will execute once for 
each element in the collection.

for elmt in list_of_items:
statement1
statement2
…

 At the beginning of every cycle, the next element in
list_of_items is assigned as the value of variable elmt.
Then, statements are executed in order.
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For loop 
 Let's try the for loop on a collection of characters (a 

string):
for x in 'Hello World!':

print x

 This means:
"Take every element in collection 'Hello World!' in turn, 
assign it to variable x, and print it to the screen.
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range() and for loops 
 Python has a built-in function called range() which 

generates lists of integers.

 If you call range(a,b) with two arguments a and
b, it will generate a list of integers from a up to
b-1 (b is excluded!). a should be less than b.

 If you call range(a) with one argument a, it generates a 
list of integers from 0 up to a-1 (a is excluded!).

 Note: if a is less than or equal to 0, range(a) will return an 
empty list [].
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range()
>>> range(5)

[0,1,2,3,4]
>>> range(1,5)

[1,2,3,4]
>>> range(6,3)
[]
>>> range(-5,-9)
[]
>>> range(-9,-5)
[-9,-8,-7,-6]
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docstrings (revisited)
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Docstrings vs Comments
 Docstrings are for external use. They are meant to 

synthesize what a function does so other programmers 
using it don't have to read through its code.

 Comments are for internal use. They explain how a 
function accomplishes a task. Their purpose is to make 
code easier to read by future programmers.
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Docstring for sum_range
def sum_range(num):

sum = 0
curr_number = 1
while curr_number <= num:

sum += curr_number
curr_number += 1

return sum

 Our docstring should specify that:
- we expect a positive integer num
- function returns the sum of all the integers between 1/num
- 1 and num are included in the calculation.
- num should be greater than or equal to 1
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Docstring for sum_range
def sum_range(num):
'''Return the sum of all integers between 1 and num 
(inclusive). Num is an integer >= 1.'''

sum = 0
curr_number = 1
while curr_number <= num:

sum += curr_number
curr_number += 1

return sum
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Comments for sum_range
def sum_range(num):
'''Return the sum of all integers between 1 and num 
(inclusive). Num is an integer >= 1.'''

sum = 0
curr_number = 1
while curr_number <= num:

sum += curr_number
curr_number += 1

return sum

Comments should describe what each line does and
how the task is accomplished.
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Comments for sum_range
def sum_range(num):

sum = 0 # keeps running total
curr_number = 1 # init. count
# loop through numbers in
# range until you reach num
while curr_number <= num:

# add the number to sum
sum += curr_number
# increment the number
curr_number += 1

# when loop finishes, sum will
# equal desired quantity
return sum
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Testing 
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Testing in __main__
 This will be useful to know when completing your 

assignment.

 You've written a function. You think it does what it's
supposed to, but how can you be sure?

 You should test your function: try to call it with 
different values, and see if the result is what you expect it 
to be.

 The place for testing code is the __main__ block of your 
program.
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Summing the numbers in a range
def sum_range(num):

sum = 0
for curr in range(1 , num + 1):

sum = sum + curr
return sum

if __name__ == "__main__":
print sum_range(4) # should be 10
print sum_range(5) # should be 15
print sum_range(1) # border case: num == 1
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Summing the numbers in a range
def sum_range(num):

sum = 0
for curr in range(1 , num + 1):

sum = sum + curr
return sum

if __name__ == "__main__":
if sum_range(4) == 10:     # range(4) should be 10

print "range(4) OK"
else:

print "range(4) FAILED"
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Lists
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Lists

 We’ve seen lists before—that’s what range()
returns.

 Lists are very powerful structures.
̶ Lists can contain strings, numbers, even other lists.
̶ They work very much like strings

• You get pieces out with []
• You can add lists together
• You can use for loops on them

̶ We can use them to process a variety of kinds of 
data.
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Demonstrating lists
>>> mylist = ["This","is","a", 12]
>>> print mylist
['This', 'is', 'a', 12]
>>> print mylist[0]
This
>>> for i in mylist:
...       print i
... 
This
is
a
12
>>> print mylist + ["Really!"]
['This', 'is', 'a', 12, 'Really!']
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Examples
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Factorial
def factorial(n):

f = 1
while (n > 0):

f = f * n
n = n - 1

return f
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What have we learnt today?

 Variable scope & Namespaces

 String Formatting

 Testing

 for-loops & range

 Lists
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This Week’s To Do List

 Go through lecture slides – make sure you try the code 
snippets

 Try the lecture’s programs posted on course website
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