
University of Toronto

CSC108: Introduction to Computer
Programming

Lecture 4
Wael Aboulsaadat

Acknowledgment: these slides are based on material by: Velian Pandeliev, Diane Horton,
Michael Samozi, Jennifer Campbell, and Paul Gries from CS UoT

University of Toronto

CSC108: Introduction to Computer Programming

1

Announcements

 Quiz average is 88%

 Solutions will be posted.

 Re-mark requests are due a week from today.

 Quiz 2 next Thursday

University of Toronto

CSC108: Introduction to Computer Programming

2

What have we learnt up till now?

 Variables
 Logical & Mathematical Operators
 Assignment Statement
 Types & Type conversion
 if/else Statement
 print
 input & raw_input
 Functions
 Docstrings
 while loops

University of Toronto

CSC108: Introduction to Computer Programming

3

Functions (revisited)

University of Toronto

CSC108: Introduction to Computer Programming

4

print vs return
 print and return do very different things:

 print is used to display information to the user by
outputting it to the screen

 print can be used anywhere, as many times as is
needed

 print gives information only to the user, it doesn't
make it available to the programmer for future use

University of Toronto

CSC108: Introduction to Computer Programming

5

print vs return
 print and return do very different things:

 return is used to extract a value from a function
for further use inside a program (in fact, it's the
only way to extract a value from a function)

 return only appears at the end of a function body

 return passes information to other parts of the
program, and does not make it available to the user

University of Toronto

CSC108: Introduction to Computer Programming

6

print vs return
 Write a function that computes the sum of all

integers between 1 and a given number (inclusive).

Algorithm:
1) make a variable to keep track of the sum
2) starting at 1, add the integer to the sum and

increment it by 1
3) repeat Step 2 until you have added the given

number

University of Toronto

CSC108: Introduction to Computer Programming

7

print vs return
def sum_range(num):

sum = 0
curr_number = 1
while curr_number <= num:

sum = sum + curr_number
curr_number = curr_number + 1

 Now what? Do we print? Do we return? The instructions
didn't specify.

 When in doubt, use the more general statement, the
statement that lets the programmer decide what to
do next: use return.

University of Toronto

CSC108: Introduction to Computer Programming

8

print vs return
def sum_range(num):

sum = 0
curr_number = 1
while curr_number <= num:

sum = sum + curr_number
curr_number = curr_number + 1

return sum

 This makes sense also because the function itself
shouldn't know or care where num came from, or what
the intended use of the sum is.

University of Toronto

CSC108: Introduction to Computer Programming

9

Variables (revisited)

University of Toronto

CSC108: Introduction to Computer Programming

10

Variable Scope
 What does this program do?

def f():
t = 5
print t

x = 9
print x
f()
print t

University of Toronto

CSC108: Introduction to Computer Programming

11

Variable Scope
 What about this one?

def f():
t = 5
print x

x = 9
print x
f()
print t

University of Toronto

CSC108: Introduction to Computer Programming

12

Namespaces
 In Python, the structure that keeps track of the names

Python knows is called a namespace.

 Namespaces contain names associated with variables,
functions, imported modules, etc.

 Python programs have multiple namespaces, meaning
that they store names in several different places.

 This matters because the method Python uses to look for
names can affect the scope of your variables: which
parts of your code 'know' about them

University of Toronto

CSC108: Introduction to Computer Programming

13

Namespaces
 At the lowest level of every Python program there's

a built-in namespace, which automatically contains
the names of all available built-in functions.

 When the program starts, a global namespace is
created to keep track of global variables.

 Finally, a new local namespace is created every time
a function body is executed. It contains only variables
local to that function (such as parameters).

University of Toronto

CSC108: Introduction to Computer Programming

14

Namespaces
 Local namespaces are destroyed when the function

body exits.

 Since function bodies can contain other function
definitions, namespaces can contain other nested local
namespaces.

University of Toronto

CSC108: Introduction to Computer Programming

15

Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

University of Toronto

CSC108: Introduction to Computer Programming

16

Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

Global namespace:
f (function)

Built-in namespace:
abs (function)
….

University of Toronto

CSC108: Introduction to Computer Programming

17

Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

Global namespace:
f (function)
x = 9

Built-in namespace:
abs (function)
….

University of Toronto

CSC108: Introduction to Computer Programming

18

Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

f() namespace:
t = 5

Global namespace:
f (function)
x = 9

Built-in namespace:
abs (function)
….

University of Toronto

CSC108: Introduction to Computer Programming

19

Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

f() namespace:
t = 5
g (function)

Global namespace:
f (function)
x = 9

Built-in namespace:
abs (function)
….

University of Toronto

CSC108: Introduction to Computer Programming

20

Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

g() namespace:
s = 3

f() namespace:
t = 5
g (function)

Global namespace:
x = 9
f (function)

Built-in namespace:
abs (function)
….

University of Toronto

CSC108: Introduction to Computer Programming

21

Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

g() namespace:
s = 3
t = 4

f() namespace:
t = 5
g (function)

Global namespace:
x = 9
f (function)

Built-in namespace:
abs (function)
….

University of Toronto

CSC108: Introduction to Computer Programming

22

Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

f() namespace:
t = 5
g (function) m = 10

Global namespace:
x = 9
f (function)

Built-in namespace:
abs (function)
….

Namespace
erased

University of Toronto

CSC108: Introduction to Computer Programming

23

Namespaces
def f():

t = 5

def g():
s = 3
t = 4

g()
m = 10

x = 9
f()
y = x + 2

Global namespace:
x = 9
f (function) y = 11

Built-in namespace:
abs (function)
….

Namespace
erased

Namespace
erased

University of Toronto

CSC108: Introduction to Computer Programming

24

Consquences

1) If you want to hold on to a local variable's value, you
have to make the function return it

2) A local namespace cannot change the values of more
global variables

3) A variable in a local namespace will 'hide' variables of the
same name in more global namespaces

4) Namespaces can get a little tricky:

University of Toronto

CSC108: Introduction to Computer Programming

25

Tricky namespaces

def tricky():
print x
x = 5

x = 4
tricky()

 Use different variable names.

University of Toronto

CSC108: Introduction to Computer Programming

26

Strings (revisited)

University of Toronto

CSC108: Introduction to Computer Programming

27

Strings
 A sequence of characters in Python is called a string.

 A string is how Python represents text:

'Hello World'

"Dear auntie"

"123 is 321"

University of Toronto

CSC108: Introduction to Computer Programming

28

String formatting
 We can write better than

print "The sum of", w, ","x,",",y,"and",z,"is",sum,". "
Python has a way to specify where in a string you'd like a
value to appear, and in what format.

 If x is an integer, instead of using:
print "You have", x, "dollars"

We can use:
print "You have %d dollars " % x

 %d means "Insert the value of the variable I give you
here, and format it as an integer"

University of Toronto

CSC108: Introduction to Computer Programming

29

Format Placeholder
 %d displays the value as an integer

 %f displays the value as a floating-point decimal

 %f.2 displays the value as a floating-point decimal
accurate (and padded) to 2 decimal places

 %s displays the value as a string of characters

University of Toronto

CSC108: Introduction to Computer Programming

30

Multiple Variables
 To specify multiple variables with placeholders, you have

to separate them with commas and enclose them in
parentheses after the %:

dollars = 4
cents = 35
print "You have %d dollars and %d cents" %

(dollars, cents)

University of Toronto

CSC108: Introduction to Computer Programming

31

New Line
 In Python, you can insert a new line in the middle of

a string by using \n:
print "Sincerely,\nB. Pitt "

 You can break up a line that's too long (over 80
characters) into multiple lines with \:

print "When I was a little girl,\
Barbara Stanwick and I used to dance "

 For expressions:
return (number_of_generals *

number_of_soldiers_per_general)

University of Toronto

CSC108: Introduction to Computer Programming

32

String Comparison
 Comparison operators apply to strings.

 In the case of strings, a 'greater' string is one which is
further down the list in alphabetical order than a 'lesser'
string.
>>> 'Alice' < 'Zimbabwe'
True
>>> 'Timmy' > 'Tommy'
False
>>> 'Timmy' < 'timmy'
True

University of Toronto

CSC108: Introduction to Computer Programming

33

String Comparison
 ASCII Table & codes

University of Toronto

CSC108: Introduction to Computer Programming

34

Special Strings
 There are several special characters that can be

represented inside strings:

University of Toronto

CSC108: Introduction to Computer Programming

35

Strings Can Be Sliced
 What if we wanted a string representing all the characters

of 'Hello!' except the first?

 We can slice (or ask for substrings of) a string using
the following notation:

string[start:end]
̶ start and end are both indices within the string (which could be

negative).

 The character at position start is included, but the
character at position end is not! start and end are both
optional.

University of Toronto

CSC108: Introduction to Computer Programming

36

for loop (revisited)

University of Toronto

CSC108: Introduction to Computer Programming

37

For loop
 Unlike the while loop which checks the status of a

condition before it runs, the for loop will execute once for
each element in the collection.

for elmt in list_of_items:
statement1
statement2
…

 At the beginning of every cycle, the next element in
list_of_items is assigned as the value of variable elmt.
Then, statements are executed in order.

University of Toronto

CSC108: Introduction to Computer Programming

38

For loop
 Let's try the for loop on a collection of characters (a

string):
for x in 'Hello World!':

print x

 This means:
"Take every element in collection 'Hello World!' in turn,
assign it to variable x, and print it to the screen.

University of Toronto

CSC108: Introduction to Computer Programming

39

range() and for loops
 Python has a built-in function called range() which

generates lists of integers.

 If you call range(a,b) with two arguments a and
b, it will generate a list of integers from a up to
b-1 (b is excluded!). a should be less than b.

 If you call range(a) with one argument a, it generates a
list of integers from 0 up to a-1 (a is excluded!).

 Note: if a is less than or equal to 0, range(a) will return an
empty list [].

University of Toronto

CSC108: Introduction to Computer Programming

40

range()
>>> range(5)

[0,1,2,3,4]
>>> range(1,5)

[1,2,3,4]
>>> range(6,3)
[]
>>> range(-5,-9)
[]
>>> range(-9,-5)
[-9,-8,-7,-6]

University of Toronto

CSC108: Introduction to Computer Programming

41

docstrings (revisited)

University of Toronto

CSC108: Introduction to Computer Programming

42

Docstrings vs Comments
 Docstrings are for external use. They are meant to

synthesize what a function does so other programmers
using it don't have to read through its code.

 Comments are for internal use. They explain how a
function accomplishes a task. Their purpose is to make
code easier to read by future programmers.

University of Toronto

CSC108: Introduction to Computer Programming

43

Docstring for sum_range
def sum_range(num):

sum = 0
curr_number = 1
while curr_number <= num:

sum += curr_number
curr_number += 1

return sum

 Our docstring should specify that:
- we expect a positive integer num
- function returns the sum of all the integers between 1/num
- 1 and num are included in the calculation.
- num should be greater than or equal to 1

University of Toronto

CSC108: Introduction to Computer Programming

44

Docstring for sum_range
def sum_range(num):
'''Return the sum of all integers between 1 and num
(inclusive). Num is an integer >= 1.'''

sum = 0
curr_number = 1
while curr_number <= num:

sum += curr_number
curr_number += 1

return sum

University of Toronto

CSC108: Introduction to Computer Programming

45

Comments for sum_range
def sum_range(num):
'''Return the sum of all integers between 1 and num
(inclusive). Num is an integer >= 1.'''

sum = 0
curr_number = 1
while curr_number <= num:

sum += curr_number
curr_number += 1

return sum

Comments should describe what each line does and
how the task is accomplished.

University of Toronto

CSC108: Introduction to Computer Programming

46

Comments for sum_range
def sum_range(num):

sum = 0 # keeps running total
curr_number = 1 # init. count
loop through numbers in
range until you reach num
while curr_number <= num:

add the number to sum
sum += curr_number
increment the number
curr_number += 1

when loop finishes, sum will
equal desired quantity
return sum

University of Toronto

CSC108: Introduction to Computer Programming

47

Testing

University of Toronto

CSC108: Introduction to Computer Programming

48

Testing in __main__
 This will be useful to know when completing your

assignment.

 You've written a function. You think it does what it's
supposed to, but how can you be sure?

 You should test your function: try to call it with
different values, and see if the result is what you expect it
to be.

 The place for testing code is the __main__ block of your
program.

University of Toronto

CSC108: Introduction to Computer Programming

49

Summing the numbers in a range
def sum_range(num):

sum = 0
for curr in range(1 , num + 1):

sum = sum + curr
return sum

if __name__ == "__main__":
print sum_range(4) # should be 10
print sum_range(5) # should be 15
print sum_range(1) # border case: num == 1

University of Toronto

CSC108: Introduction to Computer Programming

50

Summing the numbers in a range
def sum_range(num):

sum = 0
for curr in range(1 , num + 1):

sum = sum + curr
return sum

if __name__ == "__main__":
if sum_range(4) == 10: # range(4) should be 10

print "range(4) OK"
else:

print "range(4) FAILED"

University of Toronto

CSC108: Introduction to Computer Programming

51

Lists

University of Toronto

CSC108: Introduction to Computer Programming

52

Lists

 We’ve seen lists before—that’s what range()
returns.

 Lists are very powerful structures.
̶ Lists can contain strings, numbers, even other lists.
̶ They work very much like strings

• You get pieces out with []
• You can add lists together
• You can use for loops on them

̶ We can use them to process a variety of kinds of
data.

University of Toronto

CSC108: Introduction to Computer Programming

53

Demonstrating lists
>>> mylist = ["This","is","a", 12]
>>> print mylist
['This', 'is', 'a', 12]
>>> print mylist[0]
This
>>> for i in mylist:
... print i
...
This
is
a
12
>>> print mylist + ["Really!"]
['This', 'is', 'a', 12, 'Really!']

University of Toronto

CSC108: Introduction to Computer Programming

54

Examples

University of Toronto

CSC108: Introduction to Computer Programming

55

Factorial
def factorial(n):

f = 1
while (n > 0):

f = f * n
n = n - 1

return f

University of Toronto

CSC108: Introduction to Computer Programming

56

What have we learnt today?

 Variable scope & Namespaces

 String Formatting

 Testing

 for-loops & range

 Lists

University of Toronto

CSC108: Introduction to Computer Programming

57

This Week’s To Do List

 Go through lecture slides – make sure you try the code
snippets

 Try the lecture’s programs posted on course website

	CSC108: Introduction to Computer Programming��Lecture 4
	Announcements
	What have we learnt up till now?
	Slide Number 4
	print vs return
	print vs return
	print vs return
	print vs return
	print vs return
	Slide Number 10
	Variable Scope
	Variable Scope
	Namespaces
	Namespaces
	Namespaces
	Namespaces
	Namespaces
	Namespaces
	Namespaces
	Namespaces
	Namespaces
	Namespaces
	Namespaces
	Namespaces
	Consquences
	Tricky namespaces
	Slide Number 27
	Strings
	String formatting
	Format Placeholder
	Multiple Variables
	New Line
	String Comparison
	String Comparison
	Special Strings
	Strings Can Be Sliced
	Slide Number 37
	For loop
	For loop
	range() and for loops
	range()
	Slide Number 42
	Docstrings vs Comments
	Docstring for sum_range
	Docstring for sum_range
	Comments for sum_range
	Comments for sum_range
	Slide Number 48
	Testing in __main__
	Summing the numbers in a range
	Summing the numbers in a range
	Slide Number 52
	Lists
	Demonstrating lists
	Slide Number 55
	Factorial
	What have we learnt today?
	This Week’s To Do List

