
University of Toronto

CSC108: Introduction to Computer
Programming

Lecture 7
Wael Aboulsaadat

Acknowledgment: these slides are based on material by: Velian Pandeliev, Diane Horton,
Michael Samozi, Jennifer Campbell, and Paul Gries from CS UoT

University of Toronto

CSC108: Introduction to Computer Programming

1

Announcements
 Midterm average is 69%

 Test suite for A2

 You can work in pairs!

University of Toronto

CSC108: Introduction to Computer Programming

2

What have we learnt up till now?
 Statements

̶ Variables
̶ Logical & Mathematical Operators
̶ Assignment Statement
̶ if/else Statement
̶ while loops

 Types & Type conversion

 I/O
̶ print
̶ input & raw_input
̶ Files

University of Toronto

CSC108: Introduction to Computer Programming

3

What have we learnt up till now?
 Docstrings

 Code Organization
̶ Functions
̶ Variable scope & Namespaces & Mutability
̶ Classes & Objects

 Data Structures
̶ Lists

University of Toronto

CSC108: Introduction to Computer Programming

4

Functions
(revisited)

University of Toronto

CSC108: Introduction to Computer Programming

5

Function Parameters & Default Values

 We can specify optional parameters by supplying a fall-
back default value in the function definition:

def calc_rectangle_area(breadth=1, length=1):
return breadth * length

 Above, we are specifying that if calc_rectangle_area is
ever called with just no arguments, breadth & length will
be assigned 1

 However, if calc_rectangle_are is called with two
parameters, the values are passed to the function

University of Toronto

CSC108: Introduction to Computer Programming

6

Function Overloading
 Defining two functions with the same name but a different

number of parameters:

def calc_area(length):
...

def calc_area(breadth, length):
...

calc_area (5)
calc_area (3,8)

University of Toronto

CSC108: Introduction to Computer Programming

7

Tuples

University of Toronto

CSC108: Introduction to Computer Programming

8

Tuples
 Recall: lists are mutable, ordered collections of elements.

 In Python, lists have an immutable cousin called the
tuple ('t-OO-ple' and 't-UH-ple' are both acceptable
pronunciations)

 A tuple is an ordered collection of elements that is
immutable.

 Like lists, tuples can be indexed and iterated over,
but they don't have any methods and they can't be
changed!

University of Toronto

CSC108: Introduction to Computer Programming

9

Tuple: syntax
 Tuples are created using the following notation:

>>> x = (4, 7, 9)

 Where have we seen notation like this before?
 It turns out that formatting strings take tuples:

print "%s, %s" % (greeting, name)
 Even though tuples are created using round

brackets, their elements are still accessed using square
brackets:

>>> x[0]
4

University of Toronto

CSC108: Introduction to Computer Programming

10

Tuple: usage
 Tuples can be useful when defining things like points

in 2-D and 3-D space.

 The name 'tuple' comes from the following series:
single, double, triple, quadruple, quintuple, sextuple...

 It simply means "an ordered collection of two or
more values".

University of Toronto

CSC108: Introduction to Computer Programming

11

Tuple: limitations
 There are a few things we cannot do with tuples

that we could do with lists:

1) change elements:
x[2] = 8 # WRONG

2) use methods that change elements:
x.append('seven') # WRONG

3) use any methods at all:
x.index(4) # WRONG

University of Toronto

CSC108: Introduction to Computer Programming

12

Tuple: capabilities
 We can, however, still do the following:

1) use built-in functions:
len(x)

2) ask for individual elements:
print x[3]

3) iterate:
for value in x:

print value

University of Toronto

CSC108: Introduction to Computer Programming

13

Tuple: advantage
 If a function returns a tuple, we can assign separate

variables to each element:

>>> point = (4, 5, 8)
>>> x, y, z = point
>>> y
5
>>> x, y, z = (3, 2, -1)

University of Toronto

CSC108: Introduction to Computer Programming

14

Tuple: advantage
 If a function returns a tuple, we can assign separate

variables to each element:

def quadcube(x):
'''Return x squared and x cubed'''

return (x**2, x**3)

>>> a, b = quadcube(3)
>>> print a
9
>>> print b
27

University of Toronto

CSC108: Introduction to Computer Programming

15

Dictionaries

University of Toronto

CSC108: Introduction to Computer Programming

16

Dictionary
 A dictionary is a collection of associations.

 A dictionary entry consists of a key and a value.

 Keys are easily searchable and provide access to the
information stored in their corresponding values.

 In a real-world dictionary, words are keys and their
definitions are values. Key Value

1111 111 Coolway…

1234 218 Nice Road…

University of Toronto

CSC108: Introduction to Computer Programming

17

Dictionary: syntax
 Dictionaries are defined using the following syntax:

a_dict = { key1 : value1, key2 : value2 ... }

 A dictionary's keys can be anything as long as they
are immutable objects (we don't want keys
changing on the fly!)

 A dictionary's values can be anything (including
other dictionaries...).

 To retrieve the value associated with a particular key, we
use square brackets:

a_dict[key1]

University of Toronto

CSC108: Introduction to Computer Programming

18

Dictionary: example
 Dictionaries themselves are mutable, which means

that we can add new key-value pairs as we go:

>>> d = {'a': 8, 'b': 4}

Key Value
‘a’
‘b’ 4

8

University of Toronto

CSC108: Introduction to Computer Programming

19

Dictionary: example
 Dictionaries themselves are mutable, which means

that we can add new key-value pairs as we go:

>>> d = {'a': 8, 'b': 4}
>>> d['a']
8

Key Value
‘a’
‘b’ 4

8

University of Toronto

CSC108: Introduction to Computer Programming

20

Dictionary: insertion
 Dictionaries themselves are mutable, which means

that we can add new key-value pairs as we go:

>>> d = {'a': 8, 'b': 4}
>>> d['a']
8
>>> d['c'] = 5
>>> d
{'a': 8, 'b': 4, 'c': 5}
>>> d['c']
5

Key Value
‘a’
‘b’ 4

8

‘c’ 5

University of Toronto

CSC108: Introduction to Computer Programming

21

Dictionary: lookup
 We can check for membership in dictionaries, but

only for keys:

>>> d = {'a': 8, 'b': 4}
>>> 'a' in d
True
>>> 8 in d
False
>>> d['c'] = 6
>>> 'c' in d
True

Key Value
‘a’
‘b’ 4

8

‘c’ 6

University of Toronto

CSC108: Introduction to Computer Programming

22

Dictionary: deletion
 We can remove a key-value pair from a dictionary

using keyword del:

>>> d = {'a': 8, 'b': 4}
>>> 'a' in d
True

Key Value
‘a’
‘b’ 4

8

University of Toronto

CSC108: Introduction to Computer Programming

23

Dictionary: deletion
 We can remove a key-value pair from a dictionary

using keyword del:

>>> d = {'a': 8, 'b': 4}
>>> 'a' in d
True
>>> del d['a']

Key Value
‘a’
‘b’ 4

8

University of Toronto

CSC108: Introduction to Computer Programming

24

Dictionary: deletion
 We can remove a key-value pair from a dictionary

using keyword del:

>>> d = {'a': 8, 'b': 4}
>>> 'a' in d
True
>>> del d['a']
>>> 'a' in d
False
>>> d
{'b': 4}

Key Value
‘b’ 4

University of Toronto

CSC108: Introduction to Computer Programming

25

Dictionary: keys & uniqueness
 The main use for dictionaries is being able to store

values in named spaces that correspond to keys.

 Keys are like indices, except they don't have to be in
order, and they don't have to be numbers.

 Dictionary keys are unique.

 Because they serve as the lookup mechanism in
dictionaries (like indices in lists), each key has to appear
only once in a given dictionary.

University of Toronto

CSC108: Introduction to Computer Programming

26

Dictionary: keys & order
 Note that keys in a dictionary are stored in an arbitrary

order.

 There is no guarantee they will come out sorted in any
way, or in the order in which you added them.

University of Toronto

CSC108: Introduction to Computer Programming

27

Dictionary: lookup
 Dictionaries come with some helpful methods.

 If we define a dictionary
>>> dict = {'a': 3, 'b': 8}

 dict.keys() returns a list of the keys in the dictionary:
['a', 'b']

 dict.values() returns a list of the values in the dictionary:
[3, 8]

 dict.items() returns a list of the key-value pairs in the
dictionary as tuples: [('a', 3), ('b', 8)]

University of Toronto

CSC108: Introduction to Computer Programming

28

Dictionary: lookup
>>> dict = {'a': 3, 'b': 8}
dict.get(key) does the same thing as
dict[key], but it does not fail if the key is not
in the dictionary:

>>> dict.get('a')
3

>>> dict.get('c')
None
>>> dict['c']
Traceback (most recent call last):.KeyError: 'c'

University of Toronto

CSC108: Introduction to Computer Programming

29

Dictionary: update
>>> dict = {'a': 3, 'b': 8}
>>> dict2 = {'a': 5, 'c': 9}

>>> dict.update(dict2)
copies values from dict2 to dict1. If any
keys match, the values from dict2 will
update those in dict. So, update() can be
used both to extend a dictionary with new
key-value pairs and to update a dictionary's
existing pairs:
makes dict {'a': 5, 'c': 9, 'b': 8}

University of Toronto

CSC108: Introduction to Computer Programming

30

Dictionary: methods
>>> dict = {'a': 3, 'b': 8}

dict.clear() empties the dictionary of all
key-value pairs.
This may be useful if you'd like to keep
using the same object, but need to reset its
contents.

>>> dict.clear()
>>> dict
{}

University of Toronto

CSC108: Introduction to Computer Programming

31

Dictionary: iteration over keys
 Dictionaries are collections, so we can iterate over them

using for.

 With dictionaries, the for loop iteration advances over
keys, not key-value pairs!

for key in d:
print key

University of Toronto

CSC108: Introduction to Computer Programming

32

Dictionary: iteration over keys – bad way!
 This is an equivalent way, but it's bad style:

for key in d.keys():
print key

 Why is it bad style?

 d.keys() creates and returns an entirely new object: a list
of keys, which is an extra step that ties up extra memory.

 These efficiency considerations are going to start to
matter in a week or so.

University of Toronto

CSC108: Introduction to Computer Programming

33

Dictionary: iteration over values – one way
 In dictionaries, we don't have direct access to the

values with for. Instead, we use:

for value in d.values():
print value

 This gives us access to values, but no good way to tie
them back to keys.

University of Toronto

CSC108: Introduction to Computer Programming

34

Dictionary: iteration over key-value pairs
 The most common iteration technique for dictionaries is

to iterate over key-value pairs. We do so as follows:

for (key, value) in d.items():
print key
print value

 Note that we are using a tuple inside a for loop definition
to get two variables that change with every pass through
the loop.

 This gives us access to keys and values.

University of Toronto

CSC108: Introduction to Computer Programming

35

Dictionary: advantage
 Fastest access time!

 How dictionary is implemented ?

 Let us compare finding a value in a list to finding a value
in dictionary

Hashing
Function

key Index to Value

Key Value
1111 111 Coolway…

1234 218 Nice Road…

University of Toronto

CSC108: Introduction to Computer Programming

36

Dictionary: advantage
 Finding a value in a list

def checkValue(lst,Val):
for element in lst:

if element == Val:
return True

return False

We are
Lucky

0

1Mn

University of Toronto

CSC108: Introduction to Computer Programming

37

Dictionary: advantage
 Finding a value in a list

def checkValue(lst,Val):
for element in lst:

if element == Val:
return True

return False We are
NOT lucky

0

1Mn

University of Toronto

CSC108: Introduction to Computer Programming

38

Dictionary: advantage
 Finding a value in a list

def checkValue(lst,Val):
for element in lst:

if element == Val:
return True

return False

0

1Mn

Average
Case!

University of Toronto

CSC108: Introduction to Computer Programming

39

Dictionary: advantage
 Finding a value in a list

def checkValue(lst,Val):
for element in lst:

if element == Val:
return True

return False

 Finding a value in dictionary d.get(key)
 Finding a value in dictionary does

not involve iteration over values.
Why? Hashing function!

We are
lucky

We are
NOT lucky

0

1Mn

Average
Case!

0

1Mn

University of Toronto

CSC108: Introduction to Computer Programming

40

Dictionary: advantage
 Finding a value in a list

def checkValue(lst,Val):
for element in lst:

if element == Val:
return True

return False

 Finding a value in dictionary d.get(key)
 Finding a value in dictionary does

not involve iteration over values.
Why? Hashing function!

We are
lucky

We are
NOT lucky

0

1Mn

Average
Case!

We are
always lucky

0

1Mn

University of Toronto

CSC108: Introduction to Computer Programming

41

Dictionary: example
phone = { '555-7632‘ : 'Paul',

'555-9832‘ : 'Andrew',
'555-6677‘ : 'Dan',
'555-2222‘ : 'Paul',
'555-7343' : 'Diane'}

 Suppose we want to create a list of Paul's phone
numbers:

paulphones = []
for key in phone:

if phone[key] == 'Paul':
paulphones.append(key)

University of Toronto

CSC108: Introduction to Computer Programming

42

Dictionary: inverting key-value
phone = { '555-7632‘ : 'Paul',

'555-9832‘ : 'Andrew',
'555-6677‘ : 'Dan',
'555-2222‘ : 'Paul',
'555-7343' : 'Diane'}

 Suppose we want to switch key-values
phoneR = {}
for (number, name) in phone.items():

phoneR[name] = number

University of Toronto

CSC108: Introduction to Computer Programming

43

Dictionary: inverting key-value
phone = { '555-7632‘ : 'Paul',

'555-9832‘ : 'Andrew',
'555-6677‘ : 'Dan',
'555-2222‘ : 'Paul',
'555-7343' : 'Diane'}

 To ensure we don't lose any numbers:
phoneR = {}
for (number, name) in phone.items():

if name not in phoneR:
phoneR[name] = [number]

else:
phoneR[name].append(number)

University of Toronto

CSC108: Introduction to Computer Programming

44

Classes & Objects
(revisited)

University of Toronto

CSC108: Introduction to Computer Programming

45

Inheritance
 Recall how Biological inheritance work!

 We have a similar mechanism in Python

 A class can inherit from another!

 What does it mean code-wise?!

University of Toronto

CSC108: Introduction to Computer Programming

46

Inheritance
 A class can extend the definition of another

class
̶ Allows use (or extension) of methods and attributes

already defined in the previous one.
̶ New class: subclass. Original: parent, ancestor or

superclass
 To define a subclass, put the name of the

superclass in parentheses after the subclass’s
name on the first line of the definition.

class ChildClass(ParentClass):

University of Toronto

CSC108: Introduction to Computer Programming

47

Definition of a class extending student
class Student:

“A class representing a student.”

def __init__(self,n,a):
self.full_name = n
self.age = a

def get_age(self):
return self.age

class Cs_student (Student):
“A class extending student.”

def __init__(self,n,a,s):
Student.__init__(self,n,a) #Call __init__ for student
self.section_num = s

def get_age(): #Redefines get_age method entirely
print “Age: ” + str(self.age)

University of Toronto

CSC108: Introduction to Computer Programming

48

Redefining Methods
 To redefine a method of the parent class,

include a new definition using the same name in
the subclass.
̶ The old code won’t get executed.

 To execute the method in the parent class in
addition to new code for some method, explicitly
call the parent’s version of the method.
parentClass.methodName(self, a, b, c)
̶ The only time you ever explicitly pass ‘self’ as an

argument is when calling a method of an
ancestor.

University of Toronto

CSC108: Introduction to Computer Programming

49

Extending __init__

 Same as for redefining any other method…
̶ Commonly, the ancestor’s __init__ method is

executed in addition to new commands.
̶ You’ll often see something like this in the
__init__ method of subclasses:

parentClass.__init__(self, x, y)

where parentClass is the name of the
parent’s class.

University of Toronto

CSC108: Introduction to Computer Programming

50

This Week’s To Do List

 Go through lecture slides – make sure you try the code
snippets

 Try the lecture’s programs posted on course website

	CSC108: Introduction to Computer Programming��Lecture 7
	Announcements
	What have we learnt up till now?
	What have we learnt up till now?
	Slide Number 5
	Function Parameters & Default Values
	Function Overloading
	Slide Number 8
	Tuples
	Tuple: syntax
	Tuple: usage
	Tuple: limitations
	Tuple: capabilities
	Tuple: advantage
	Tuple: advantage
	Slide Number 16
	Dictionary
	Dictionary: syntax
	Dictionary: example
	Dictionary: example
	Dictionary: insertion
	Dictionary: lookup
	Dictionary: deletion
	Dictionary: deletion
	Dictionary: deletion
	Dictionary: keys & uniqueness
	Dictionary: keys & order
	Dictionary: lookup
	Dictionary: lookup
	Dictionary: update
	Dictionary: methods
	Dictionary: iteration over keys
	Dictionary: iteration over keys – bad way!
	Dictionary: iteration over values – one way
	Dictionary: iteration over key-value pairs
	Dictionary: advantage
	Dictionary: advantage
	Dictionary: advantage
	Dictionary: advantage
	Dictionary: advantage
	Dictionary: advantage
	Dictionary: example
	Dictionary: inverting key-value
	Dictionary: inverting key-value
	Slide Number 45
	Inheritance
	Inheritance
	Definition of a class extending student
	Redefining Methods
	Extending __init__
	This Week’s To Do List

