
University of Toronto

CSC108: Introduction to Computer
Programming

Lecture 7
Wael Aboulsaadat

Acknowledgment: these slides are based on material by: Velian Pandeliev, Diane Horton,
Michael Samozi, Jennifer Campbell, and Paul Gries from CS UoT

University of Toronto

CSC108: Introduction to Computer Programming

1

Announcements
 Midterm average is 69%

 Test suite for A2

 You can work in pairs!

University of Toronto

CSC108: Introduction to Computer Programming

2

What have we learnt up till now?
 Statements

̶ Variables
̶ Logical & Mathematical Operators
̶ Assignment Statement
̶ if/else Statement
̶ while loops

 Types & Type conversion

 I/O
̶ print
̶ input & raw_input
̶ Files

University of Toronto

CSC108: Introduction to Computer Programming

3

What have we learnt up till now?
 Docstrings

 Code Organization
̶ Functions
̶ Variable scope & Namespaces & Mutability
̶ Classes & Objects

 Data Structures
̶ Lists

University of Toronto

CSC108: Introduction to Computer Programming

4

Functions
(revisited)

University of Toronto

CSC108: Introduction to Computer Programming

5

Function Parameters & Default Values

 We can specify optional parameters by supplying a fall-
back default value in the function definition:

def calc_rectangle_area(breadth=1, length=1):
return breadth * length

 Above, we are specifying that if calc_rectangle_area is
ever called with just no arguments, breadth & length will
be assigned 1

 However, if calc_rectangle_are is called with two
parameters, the values are passed to the function

University of Toronto

CSC108: Introduction to Computer Programming

6

Function Overloading
 Defining two functions with the same name but a different

number of parameters:

def calc_area(length):
...

def calc_area(breadth, length):
...

calc_area (5)
calc_area (3,8)

University of Toronto

CSC108: Introduction to Computer Programming

7

Tuples

University of Toronto

CSC108: Introduction to Computer Programming

8

Tuples
 Recall: lists are mutable, ordered collections of elements.

 In Python, lists have an immutable cousin called the
tuple ('t-OO-ple' and 't-UH-ple' are both acceptable
pronunciations)

 A tuple is an ordered collection of elements that is
immutable.

 Like lists, tuples can be indexed and iterated over,
but they don't have any methods and they can't be
changed!

University of Toronto

CSC108: Introduction to Computer Programming

9

Tuple: syntax
 Tuples are created using the following notation:

>>> x = (4, 7, 9)

 Where have we seen notation like this before?
 It turns out that formatting strings take tuples:

print "%s, %s" % (greeting, name)
 Even though tuples are created using round

brackets, their elements are still accessed using square
brackets:

>>> x[0]
4

University of Toronto

CSC108: Introduction to Computer Programming

10

Tuple: usage
 Tuples can be useful when defining things like points

in 2-D and 3-D space.

 The name 'tuple' comes from the following series:
single, double, triple, quadruple, quintuple, sextuple...

 It simply means "an ordered collection of two or
more values".

University of Toronto

CSC108: Introduction to Computer Programming

11

Tuple: limitations
 There are a few things we cannot do with tuples

that we could do with lists:

1) change elements:
x[2] = 8 # WRONG

2) use methods that change elements:
x.append('seven') # WRONG

3) use any methods at all:
x.index(4) # WRONG

University of Toronto

CSC108: Introduction to Computer Programming

12

Tuple: capabilities
 We can, however, still do the following:

1) use built-in functions:
len(x)

2) ask for individual elements:
print x[3]

3) iterate:
for value in x:

print value

University of Toronto

CSC108: Introduction to Computer Programming

13

Tuple: advantage
 If a function returns a tuple, we can assign separate

variables to each element:

>>> point = (4, 5, 8)
>>> x, y, z = point
>>> y
5
>>> x, y, z = (3, 2, -1)

University of Toronto

CSC108: Introduction to Computer Programming

14

Tuple: advantage
 If a function returns a tuple, we can assign separate

variables to each element:

def quadcube(x):
'''Return x squared and x cubed'''

return (x**2, x**3)

>>> a, b = quadcube(3)
>>> print a
9
>>> print b
27

University of Toronto

CSC108: Introduction to Computer Programming

15

Dictionaries

University of Toronto

CSC108: Introduction to Computer Programming

16

Dictionary
 A dictionary is a collection of associations.

 A dictionary entry consists of a key and a value.

 Keys are easily searchable and provide access to the
information stored in their corresponding values.

 In a real-world dictionary, words are keys and their
definitions are values. Key Value

1111 111 Coolway…

1234 218 Nice Road…

University of Toronto

CSC108: Introduction to Computer Programming

17

Dictionary: syntax
 Dictionaries are defined using the following syntax:

a_dict = { key1 : value1, key2 : value2 ... }

 A dictionary's keys can be anything as long as they
are immutable objects (we don't want keys
changing on the fly!)

 A dictionary's values can be anything (including
other dictionaries...).

 To retrieve the value associated with a particular key, we
use square brackets:

a_dict[key1]

University of Toronto

CSC108: Introduction to Computer Programming

18

Dictionary: example
 Dictionaries themselves are mutable, which means

that we can add new key-value pairs as we go:

>>> d = {'a': 8, 'b': 4}

Key Value
‘a’
‘b’ 4

8

University of Toronto

CSC108: Introduction to Computer Programming

19

Dictionary: example
 Dictionaries themselves are mutable, which means

that we can add new key-value pairs as we go:

>>> d = {'a': 8, 'b': 4}
>>> d['a']
8

Key Value
‘a’
‘b’ 4

8

University of Toronto

CSC108: Introduction to Computer Programming

20

Dictionary: insertion
 Dictionaries themselves are mutable, which means

that we can add new key-value pairs as we go:

>>> d = {'a': 8, 'b': 4}
>>> d['a']
8
>>> d['c'] = 5
>>> d
{'a': 8, 'b': 4, 'c': 5}
>>> d['c']
5

Key Value
‘a’
‘b’ 4

8

‘c’ 5

University of Toronto

CSC108: Introduction to Computer Programming

21

Dictionary: lookup
 We can check for membership in dictionaries, but

only for keys:

>>> d = {'a': 8, 'b': 4}
>>> 'a' in d
True
>>> 8 in d
False
>>> d['c'] = 6
>>> 'c' in d
True

Key Value
‘a’
‘b’ 4

8

‘c’ 6

University of Toronto

CSC108: Introduction to Computer Programming

22

Dictionary: deletion
 We can remove a key-value pair from a dictionary

using keyword del:

>>> d = {'a': 8, 'b': 4}
>>> 'a' in d
True

Key Value
‘a’
‘b’ 4

8

University of Toronto

CSC108: Introduction to Computer Programming

23

Dictionary: deletion
 We can remove a key-value pair from a dictionary

using keyword del:

>>> d = {'a': 8, 'b': 4}
>>> 'a' in d
True
>>> del d['a']

Key Value
‘a’
‘b’ 4

8

University of Toronto

CSC108: Introduction to Computer Programming

24

Dictionary: deletion
 We can remove a key-value pair from a dictionary

using keyword del:

>>> d = {'a': 8, 'b': 4}
>>> 'a' in d
True
>>> del d['a']
>>> 'a' in d
False
>>> d
{'b': 4}

Key Value
‘b’ 4

University of Toronto

CSC108: Introduction to Computer Programming

25

Dictionary: keys & uniqueness
 The main use for dictionaries is being able to store

values in named spaces that correspond to keys.

 Keys are like indices, except they don't have to be in
order, and they don't have to be numbers.

 Dictionary keys are unique.

 Because they serve as the lookup mechanism in
dictionaries (like indices in lists), each key has to appear
only once in a given dictionary.

University of Toronto

CSC108: Introduction to Computer Programming

26

Dictionary: keys & order
 Note that keys in a dictionary are stored in an arbitrary

order.

 There is no guarantee they will come out sorted in any
way, or in the order in which you added them.

University of Toronto

CSC108: Introduction to Computer Programming

27

Dictionary: lookup
 Dictionaries come with some helpful methods.

 If we define a dictionary
>>> dict = {'a': 3, 'b': 8}

 dict.keys() returns a list of the keys in the dictionary:
['a', 'b']

 dict.values() returns a list of the values in the dictionary:
[3, 8]

 dict.items() returns a list of the key-value pairs in the
dictionary as tuples: [('a', 3), ('b', 8)]

University of Toronto

CSC108: Introduction to Computer Programming

28

Dictionary: lookup
>>> dict = {'a': 3, 'b': 8}
dict.get(key) does the same thing as
dict[key], but it does not fail if the key is not
in the dictionary:

>>> dict.get('a')
3

>>> dict.get('c')
None
>>> dict['c']
Traceback (most recent call last):.KeyError: 'c'

University of Toronto

CSC108: Introduction to Computer Programming

29

Dictionary: update
>>> dict = {'a': 3, 'b': 8}
>>> dict2 = {'a': 5, 'c': 9}

>>> dict.update(dict2)
copies values from dict2 to dict1. If any
keys match, the values from dict2 will
update those in dict. So, update() can be
used both to extend a dictionary with new
key-value pairs and to update a dictionary's
existing pairs:
makes dict {'a': 5, 'c': 9, 'b': 8}

University of Toronto

CSC108: Introduction to Computer Programming

30

Dictionary: methods
>>> dict = {'a': 3, 'b': 8}

dict.clear() empties the dictionary of all
key-value pairs.
This may be useful if you'd like to keep
using the same object, but need to reset its
contents.

>>> dict.clear()
>>> dict
{}

University of Toronto

CSC108: Introduction to Computer Programming

31

Dictionary: iteration over keys
 Dictionaries are collections, so we can iterate over them

using for.

 With dictionaries, the for loop iteration advances over
keys, not key-value pairs!

for key in d:
print key

University of Toronto

CSC108: Introduction to Computer Programming

32

Dictionary: iteration over keys – bad way!
 This is an equivalent way, but it's bad style:

for key in d.keys():
print key

 Why is it bad style?

 d.keys() creates and returns an entirely new object: a list
of keys, which is an extra step that ties up extra memory.

 These efficiency considerations are going to start to
matter in a week or so.

University of Toronto

CSC108: Introduction to Computer Programming

33

Dictionary: iteration over values – one way
 In dictionaries, we don't have direct access to the

values with for. Instead, we use:

for value in d.values():
print value

 This gives us access to values, but no good way to tie
them back to keys.

University of Toronto

CSC108: Introduction to Computer Programming

34

Dictionary: iteration over key-value pairs
 The most common iteration technique for dictionaries is

to iterate over key-value pairs. We do so as follows:

for (key, value) in d.items():
print key
print value

 Note that we are using a tuple inside a for loop definition
to get two variables that change with every pass through
the loop.

 This gives us access to keys and values.

University of Toronto

CSC108: Introduction to Computer Programming

35

Dictionary: advantage
 Fastest access time!

 How dictionary is implemented ?

 Let us compare finding a value in a list to finding a value
in dictionary

Hashing
Function

key Index to Value

Key Value
1111 111 Coolway…

1234 218 Nice Road…

University of Toronto

CSC108: Introduction to Computer Programming

36

Dictionary: advantage
 Finding a value in a list

def checkValue(lst,Val):
for element in lst:

if element == Val:
return True

return False

We are
Lucky 

0

1Mn

University of Toronto

CSC108: Introduction to Computer Programming

37

Dictionary: advantage
 Finding a value in a list

def checkValue(lst,Val):
for element in lst:

if element == Val:
return True

return False We are
NOT lucky 

0

1Mn

University of Toronto

CSC108: Introduction to Computer Programming

38

Dictionary: advantage
 Finding a value in a list

def checkValue(lst,Val):
for element in lst:

if element == Val:
return True

return False

0

1Mn

Average
Case!

University of Toronto

CSC108: Introduction to Computer Programming

39

Dictionary: advantage
 Finding a value in a list

def checkValue(lst,Val):
for element in lst:

if element == Val:
return True

return False

 Finding a value in dictionary d.get(key)
 Finding a value in dictionary does

not involve iteration over values.
Why? Hashing function!

We are
lucky 

We are
NOT lucky 

0

1Mn

Average
Case!

0

1Mn

University of Toronto

CSC108: Introduction to Computer Programming

40

Dictionary: advantage
 Finding a value in a list

def checkValue(lst,Val):
for element in lst:

if element == Val:
return True

return False

 Finding a value in dictionary d.get(key)
 Finding a value in dictionary does

not involve iteration over values.
Why? Hashing function!

We are
lucky 

We are
NOT lucky 

0

1Mn

Average
Case!

We are
always lucky 

0

1Mn

University of Toronto

CSC108: Introduction to Computer Programming

41

Dictionary: example
phone = { '555-7632‘ : 'Paul',

'555-9832‘ : 'Andrew',
'555-6677‘ : 'Dan',
'555-2222‘ : 'Paul',
'555-7343' : 'Diane'}

 Suppose we want to create a list of Paul's phone
numbers:

paulphones = []
for key in phone:

if phone[key] == 'Paul':
paulphones.append(key)

University of Toronto

CSC108: Introduction to Computer Programming

42

Dictionary: inverting key-value
phone = { '555-7632‘ : 'Paul',

'555-9832‘ : 'Andrew',
'555-6677‘ : 'Dan',
'555-2222‘ : 'Paul',
'555-7343' : 'Diane'}

 Suppose we want to switch key-values
phoneR = {}
for (number, name) in phone.items():

phoneR[name] = number

University of Toronto

CSC108: Introduction to Computer Programming

43

Dictionary: inverting key-value
phone = { '555-7632‘ : 'Paul',

'555-9832‘ : 'Andrew',
'555-6677‘ : 'Dan',
'555-2222‘ : 'Paul',
'555-7343' : 'Diane'}

 To ensure we don't lose any numbers:
phoneR = {}
for (number, name) in phone.items():

if name not in phoneR:
phoneR[name] = [number]

else:
phoneR[name].append(number)

University of Toronto

CSC108: Introduction to Computer Programming

44

Classes & Objects
(revisited)

University of Toronto

CSC108: Introduction to Computer Programming

45

Inheritance
 Recall how Biological inheritance work!

 We have a similar mechanism in Python

 A class can inherit from another!

 What does it mean code-wise?!

University of Toronto

CSC108: Introduction to Computer Programming

46

Inheritance
 A class can extend the definition of another

class
̶ Allows use (or extension) of methods and attributes

already defined in the previous one.
̶ New class: subclass. Original: parent, ancestor or

superclass
 To define a subclass, put the name of the

superclass in parentheses after the subclass’s
name on the first line of the definition.

class ChildClass(ParentClass):

University of Toronto

CSC108: Introduction to Computer Programming

47

Definition of a class extending student
class Student:

“A class representing a student.”

def __init__(self,n,a):
self.full_name = n
self.age = a

def get_age(self):
return self.age

class Cs_student (Student):
“A class extending student.”

def __init__(self,n,a,s):
Student.__init__(self,n,a) #Call __init__ for student
self.section_num = s

def get_age(): #Redefines get_age method entirely
print “Age: ” + str(self.age)

University of Toronto

CSC108: Introduction to Computer Programming

48

Redefining Methods
 To redefine a method of the parent class,

include a new definition using the same name in
the subclass.
̶ The old code won’t get executed.

 To execute the method in the parent class in
addition to new code for some method, explicitly
call the parent’s version of the method.
parentClass.methodName(self, a, b, c)
̶ The only time you ever explicitly pass ‘self’ as an

argument is when calling a method of an
ancestor.

University of Toronto

CSC108: Introduction to Computer Programming

49

Extending __init__

 Same as for redefining any other method…
̶ Commonly, the ancestor’s __init__ method is

executed in addition to new commands.
̶ You’ll often see something like this in the
__init__ method of subclasses:

parentClass.__init__(self, x, y)

where parentClass is the name of the
parent’s class.

University of Toronto

CSC108: Introduction to Computer Programming

50

This Week’s To Do List

 Go through lecture slides – make sure you try the code
snippets

 Try the lecture’s programs posted on course website

	CSC108: Introduction to Computer Programming��Lecture 7
	Announcements
	What have we learnt up till now?
	What have we learnt up till now?
	Slide Number 5
	Function Parameters & Default Values
	Function Overloading
	Slide Number 8
	Tuples
	Tuple: syntax
	Tuple: usage
	Tuple: limitations
	Tuple: capabilities
	Tuple: advantage
	Tuple: advantage
	Slide Number 16
	Dictionary
	Dictionary: syntax
	Dictionary: example
	Dictionary: example
	Dictionary: insertion
	Dictionary: lookup
	Dictionary: deletion
	Dictionary: deletion
	Dictionary: deletion
	Dictionary: keys & uniqueness
	Dictionary: keys & order
	Dictionary: lookup
	Dictionary: lookup
	Dictionary: update
	Dictionary: methods
	Dictionary: iteration over keys
	Dictionary: iteration over keys – bad way!
	Dictionary: iteration over values – one way
	Dictionary: iteration over key-value pairs
	Dictionary: advantage
	Dictionary: advantage
	Dictionary: advantage
	Dictionary: advantage
	Dictionary: advantage
	Dictionary: advantage
	Dictionary: example
	Dictionary: inverting key-value
	Dictionary: inverting key-value
	Slide Number 45
	Inheritance
	Inheritance
	Definition of a class extending student
	Redefining Methods
	Extending __init__
	This Week’s To Do List

