
University of Toronto

CSC108: Introduction to Computer
Programming

Lecture 9
Wael Aboulsaadat

Acknowledgment: these slides are based on material by: Velian Pandeliev, Diane Horton,
Michael Samozi, Jennifer Campbell, and Paul Gries from CS UoT

University of Toronto

CSC108: Introduction to Computer Programming

1

Searching

University of Toronto

CSC108: Introduction to Computer Programming

2

Linear Search
def linear_search(lst,item):

if __name__ == "__main__":

print linear_search([9,1,5,7,8,3,4,6],6)

University of Toronto

CSC108: Introduction to Computer Programming

3

Binary Search
def binary_search(lst,item):

if __name__ == "__main__":

print binary_search([9,1,5,7,8,3,4,6],6)

University of Toronto

CSC108: Introduction to Computer Programming

4

Efficiency

University of Toronto

CSC108: Introduction to Computer Programming

5

How do we judge if an algorithm is written
efficiently ?

University of Toronto

CSC108: Introduction to Computer Programming

6

 Possible measures of efficiency:
̶ development time (code & test)
̶ program size
̶ run time*
̶ memory usage*
̶ bandwidth

 In general, “efficiency” taken to mean time & space
 What’s wrong with just running the code (stopwatch

approach)?
̶ influenced by hardware
̶ influenced by system software
̶ influenced by other activity
̶ influenced by data selection

 Better to just analyse code, independent of these factors

Introduction to Efficiency

University of Toronto

CSC108: Introduction to Computer Programming

7

How is Efficiency Measured?
 Actions of interest:

̶ Comparisons (read a memory value)
̶ Assignments (setting a memory value)

 Why?
̶ memory operations involve extra overhead

• Fastest to slowest: CPU, memory, hard drive, external
̶ memory operations are performed repeatedly

University of Toronto

CSC108: Introduction to Computer Programming

8

How is Efficiency Measured?
 Interesting behavior:

̶ worst-case analysis (worst input value and/or structure)
̶ best-case analysis (best input value and/or structure)
̶ average-case analysis (complicated)

 Uninteresting behavior:
̶ Trivial case

University of Toronto

CSC108: Introduction to Computer Programming

9

Asymptotic Analysis: Upper Bound

 Growth rate = rate at which an algorithm’s cost
grows as its input grows

 Algorithm analysis concerns itself with the number
of “basic operations” required to process input of a
certain size
̶ “basic operations” are usually memory accesses

University of Toronto

CSC108: Introduction to Computer Programming

10

O(1)

O(log n)

O(n)

O(n*log n)

O(n2)

O(n3)

O(2n)

O(nn)

University of Toronto

CSC108: Introduction to Computer Programming

11

O(n2) Sorts

University of Toronto

CSC108: Introduction to Computer Programming

12

O(n log n) Sorts

University of Toronto

CSC108: Introduction to Computer Programming

13

id & copy

University of Toronto

CSC108: Introduction to Computer Programming

14

id function
 Recall: variable name is just for us – each variable value is

stored in a memory cell.

 Each memory cell has an address.

 E.g.

University of Toronto

CSC108: Introduction to Computer Programming

15

Copying Variables
 For immutable objects, 'copying' really involves two separate

variables referring to the same object. When one is changed,
it does not affect the other since it's simply referring to a new
value.

 For mutable objects, this isn't as easy:
>>> x = [1, 2, 3]
>>> y = x
>>> x.append(4)
>>> x
[1, 2, 3, 4]
>>> y
[1, 2, 3, 4]

University of Toronto

CSC108: Introduction to Computer Programming

16

Copying Instances of a Class
 Copying a mutable object, even a simple one, involves

allocating a new space in memory and creating new
references to the object's components.

 For lists, this can be done using slice notation:
>>> x = [1, 2, 3]
>>> y = x[:]
>>> id(x)
4603616
>>> id(y)
4627672
>>> x.append(4)
>>> y
[1, 2, 3]

University of Toronto

CSC108: Introduction to Computer Programming

17

The copy Module
 Python has a built-in module called copy that can copy

arbitrary objects.
>>> x = [1, 2, 3]
>>> id(x)
4603616
>>> import copy
>>> y = copy.copy(x)
>>> id(y)
4627672
>>> x.append(4)
>>> y
[1, 2, 3]

University of Toronto

CSC108: Introduction to Computer Programming

18

The copy() Function
 copy.copy() works on user-defined classes too.

 Using a class – Point – that represents a point with x,y:
>>> import copy
>>> a = Point(1,3)
>>> id(a)
4603616
>>> b = a
>>> id(b)
4603616
>>> b = copy.copy(a)
>>> id(b)
4899521

University of Toronto

CSC108: Introduction to Computer Programming

19

The copy() Function
 Consider the class Creature:

class Creature():
def __init__(self,n,limblist):

self.name = n
self.limbs = limblist

>>> import copy
>>> g = Creature("Galgarag", ["wing","wing","claw","tail"])
>>> id(g.limbs)
4356664
>>> g2 = copy.copy(g)
>>> id(g2.limbs)
4356664

University of Toronto

CSC108: Introduction to Computer Programming

20

The copy() Function
 While copy() creates a new copy of the instance of a class, it

does not create new copies of its attributes. Instead, it
creates references to them.

 Changing a copy's immutable attributes will still not affect the
original. However, for mutable attributes, the original and the
copy are still referring to the same actual object, and
changing it for one will change it for the other.

 copy() is a method that creates a shallow copy of an object:
a copy containing only references to its attributes.

University of Toronto

CSC108: Introduction to Computer Programming

21

Shallow Copy
X = Person()

Phoneslst

University of Toronto

CSC108: Introduction to Computer Programming

22

Shallow Copy
X = Person()

Y = copy.copy(X)

Phoneslst

University of Toronto

CSC108: Introduction to Computer Programming

23

Shallow Copy
X = Person()

Y = copy.copy(X)

Phoneslst Phoneslst

University of Toronto

CSC108: Introduction to Computer Programming

24

The deepcopy() Function
 The copy module has the method deepcopy() that makes a

deep copy of an object (which includes copying its
attributes):

>>> import copy
>>> g = Creature("Galgarag",

["wing","wing","claw","tail"])
>>> id(g.limbs)
4356664
>>> g2 = copy.deepcopy(g)
>>> id(g2.limbs)
4354344

University of Toronto

CSC108: Introduction to Computer Programming

25

Shallow Copy vs. Deep Copy
X = Person()

Y = copy.copy(X)

Phoneslst Phoneslst

X = Person()

Phoneslst

University of Toronto

CSC108: Introduction to Computer Programming

26

Shallow Copy vs. Deep Copy
X = Person()

Y = copy.copy(X)

Phoneslst Phoneslst

X = Person() Y = copy.deepcopy(X)
Phoneslst Phoneslst

University of Toronto

CSC108: Introduction to Computer Programming

27

The deepcopy() Function
 deepcopy() will not only copy the object and its attributes, but

also its attributes' attributes, as deep as it needs to go.

 Consider the following:
class Body():

def __init__(self):
self.head = Head(self)

class Head():
def __init__(self, b):

self.body = b

University of Toronto

CSC108: Introduction to Computer Programming

28

The deepcopy() Function
 If deepcopy() was not implemented carefully, and it had tried

to copy mutually referring objects, it would have run forever.

 Thankfully, deepcopy() is aware of this and will not enter
infinite loops of the sort.

University of Toronto

CSC108: Introduction to Computer Programming

29

Classes & Objects
(revisited)

University of Toronto

CSC108: Introduction to Computer Programming

30

System Methods
 __init__ is an example of system methods
 We will see a few more system methods that are

used with user-defined classes.
 They are all flanked by two underscores and include:

def __str__ ():
'''returns a string representation of the object. '''

def __eq__ ():
'''returns whether two objects of a class are equal. '''

def __cmp__ ():
'''which determines how objects compare to each other. '''

University of Toronto

CSC108: Introduction to Computer Programming

31

__str__
 By default: >>> print apoint

<__main__.Point instance at 0x45d800>

 __str__ returns the string representation of the object, i.e.
what str(object) should return and how the object is printed.

def __str__(self):
'''Return a string to represent a Point object'''

return '(%d, %d)' % (self.x, self.y)

 After defining __str__:
>>> print apoint
(3, 5)

University of Toronto

CSC108: Introduction to Computer Programming

32

__eq__
 __eq__ returns True if two objects are equal, however we

choose to define equality. It determines what obj1 == obj2
should return.

 If __eq__ is not defined, obj1 == obj2 will return True iff obj1
and obj2 are referring to the same object (i.e. the same
memory address):

>>> x = Point(3,5)
>>> y = Point(3,5)
>>> x == y
False
>>> id(x) == id(y)
False

University of Toronto

CSC108: Introduction to Computer Programming

33

__eq__
 __eq__ allows us to specify that two objects do not need to

be the same object to be equal. With Point objects, perhaps
we want them to be equal if they refer to the same point:

def __eq__(self, other):
'''Return True iff self == other'''

return self.x == other.x and self.y == other.y

 Now:
>>> x = Point(3,5)
>>> y = Point(3,5)
>>> z = Point(3,4)
>>> x == y
True

>>> x == z
False

University of Toronto

CSC108: Introduction to Computer Programming

34

Comparisons methods
 __eq__ is part of a suite of methods which determine the

action of all comparison operators:

__lt__(self, other) # <
__le__(self, other) # <=
__eq__(self, other) # ==
__ne__(self, other) # !=
__gt__(self, other) # >
__ge__(self, other) # >=

University of Toronto

CSC108: Introduction to Computer Programming

35

__cmp__
 __cmp__ is a method that can be used if the other

comparison methods aren't defined. The result of the
__cmp__ method determines the relationship between two
objects of the class:

def __cmp__(self, other):

 It should return a negative number if self is less than other, 0
if they're equal and a positive number if self is greater than
other.

 Note that since __cmp__ includes an equality condition, if we
include __cmp__ we don't need to specifically include
__eq__.

University of Toronto

CSC108: Introduction to Computer Programming

36

__getitem__
 __getitem__ enables the programmer to use [] with a

custom class

 Does not make sense unless that class has a list of items
inside it.

class Building:
def __getitem__ (self, index):

>> mybuilding = Building()
>> mybuilding[1]

University of Toronto

CSC108: Introduction to Computer Programming

37

__contains__
 __contains__ enables the programmer to use the

membership in operator with a custom class

 Does not make sense unless that class has a list of items
inside it.

class Building:
def __contains__ (self, item):

>> mybuilding = Building()
>> john = Person()
>> john in mybuilding

University of Toronto

CSC108: Introduction to Computer Programming

38

__len__
 __len__ enables the programmer to use the function len with

custom class

 Does not make sense unless that class has some kind of
length attribute:

class Street:
def __len__ (self):

>> college_street = Street()
>> length(college_street)

University of Toronto

CSC108: Introduction to Computer Programming

39

__add__
 __add__ enables the programmer to add one object to

another in an expression !

 Does not make sense unless the operation has a meaning for
the class context!

University of Toronto

CSC108: Introduction to Computer Programming

40

Relationships Between Classes
 As the building blocks of more complex systems, objects can

be designed to interact with each other in one of three ways:

 Association: an object is aware of another object and
holds a reference to it

 Composition: objects combining to create more complex
ones

 Inheritance: objects are created as extensions of other
objects with additional properties

University of Toronto

CSC108: Introduction to Computer Programming

41

Association
 In an associative uses relationship, an object is aware of

another complex object and can communicate with it.

 Example: a Car has an owner attribute which is a Person.
Car

Owner

Person

name

age

sex

University of Toronto

CSC108: Introduction to Computer Programming

42

Composition
 In a compositional has-a relationship, an object is made up

of less complex objects.

 Examples:
̶ A Person has name, age and sex.
̶ A Movie object is composed of string objects title and genre and

integer object year. Person

name

age

sex

University of Toronto

CSC108: Introduction to Computer Programming

43

Public and Private Data: atom class
class atom:

def __init__(self,atno,x,y,z):
self.atno = atno
self.position = (x,y,z)

University of Toronto

CSC108: Introduction to Computer Programming

44

Public and Private Data

 Uptill now all attributes (data) in a class is public,
thus we, my mistake, could do something really
stupid like

>>> at = atom(6,0.,0.,0.)
>>> at.position = 'Grape Jelly'

that would break any function that used at.position

University of Toronto

CSC108: Introduction to Computer Programming

45

Public and Private Data

 We therefore need to protect the at.position and
provide accessors to this data
̶ Encapsulation or Data Hiding
̶ accessors are "gettors" and "settors"

 Encapsulation is particularly important when other
developers use your class

University of Toronto

CSC108: Introduction to Computer Programming

46

Public and Private Data

 In Python anything with two leading underscores is
private

__a, __my_variable

University of Toronto

CSC108: Introduction to Computer Programming

47

Encapsulated Atom
class atom:

def __init__(self,atno,x,y,z):
self.atno = atno
self.__position = (x,y,z) #position is private

def getposition(self):
return self.__position

def setposition(self,x,y,z):
self.__position = (x,y,z)

def translate(self,x,y,z):
x0,y0,z0 = self.__position
self.__position = (x0+x,y0+y,z0+z)

University of Toronto

CSC108: Introduction to Computer Programming

48

Why Encapsulate?

 By defining a specific interface you can keep other
modules from doing anything incorrect to your data

 By limiting the functions you are going to support,
you leave yourself free to change the internal data
without messing up your users
̶ Makes code more modular, since you can change large

parts of your classes without affecting other parts of the
program, so long as they only use your public functions

University of Toronto

CSC108: Introduction to Computer Programming

49

GUI

University of Toronto

CSC108: Introduction to Computer Programming

50

Typical command line program
 Non-interactive

 Linear execution

program:
main()
{

code;
code;
code;
code;
code;
code;
code;
code;
code;
code;
code;
code;

}

University of Toronto

CSC108: Introduction to Computer Programming

51

Interactive command line program

 User input commands

 Non-linear execution
 Unpredictable order
 Much idle time

program:
main()
{

decl data storage;
initialization code;

while True:
cmd=getCommand()
if cmd == 1:

command1:
code;

command2:
code;

…
}

}
}

University of Toronto

CSC108: Introduction to Computer Programming

52

Interactive Graphical User Interface

University of Toronto

CSC108: Introduction to Computer Programming

53

Interactive Graphical User Interface
 What’s make a GUI GUI?

̶ Windows
̶ Selection controls: drop-downs, radio-buttons, check

boxes, menus,..
̶ Activation controls: buttons, icons
̶ Input controls: text fields, text areas
̶ Structure information visually: lists, grids, trees, labels

Butto
n

Label Text
field

Check
Box

Radio
Butto

n

Combo Box

University of Toronto

CSC108: Introduction to Computer Programming

54

Input Events

Mouse DriverKeyboard Driver

Operating System
OS Event

Queue

http://images.google.ca/imgres?imgurl=http://www.codinghorror.com/blog/images/deck_keyboard.jpg&imgrefurl=http://www.codinghorror.com/blog/archives/000209.html&h=301&w=400&sz=25&hl=en&start=3&sig2=8p7vfjj8vswshdksj4XwFA&tbnid=dEAT8X53VR1P2M:&tbnh=93&tbnw=124&ei=ViilRt-9DYTGiQGws8DIDw&prev=/images?q=keyboard&gbv=2&svnum=10&hl=en�
http://images.google.ca/imgres?imgurl=http://mobilitytoday.com/vbmcms/images/ThinkOutside-Mouse-top.JPG&imgrefurl=http://mobilitytoday.com/archive.php?c=44&type=a&h=412&w=302&sz=7&hl=en&start=4&sig2=ivfkis1nodJx9Q1u1vAjcA&tbnid=KcffRR-Ol9990M:&tbnh=125&tbnw=92&ei=BSmlRubjKcy4igGyoszIDw&prev=/images?q=mouse&gbv=2&svnum=10&hl=en�

University of Toronto

CSC108: Introduction to Computer Programming

55

Input Events

Mouse DriverKeyboard Driver

Operating System
OS Event

Queue

http://images.google.ca/imgres?imgurl=http://www.codinghorror.com/blog/images/deck_keyboard.jpg&imgrefurl=http://www.codinghorror.com/blog/archives/000209.html&h=301&w=400&sz=25&hl=en&start=3&sig2=8p7vfjj8vswshdksj4XwFA&tbnid=dEAT8X53VR1P2M:&tbnh=93&tbnw=124&ei=ViilRt-9DYTGiQGws8DIDw&prev=/images?q=keyboard&gbv=2&svnum=10&hl=en�
http://images.google.ca/imgres?imgurl=http://mobilitytoday.com/vbmcms/images/ThinkOutside-Mouse-top.JPG&imgrefurl=http://mobilitytoday.com/archive.php?c=44&type=a&h=412&w=302&sz=7&hl=en&start=4&sig2=ivfkis1nodJx9Q1u1vAjcA&tbnid=KcffRR-Ol9990M:&tbnh=125&tbnw=92&ei=BSmlRubjKcy4igGyoszIDw&prev=/images?q=mouse&gbv=2&svnum=10&hl=en�

University of Toronto

CSC108: Introduction to Computer Programming

56

Input Events

Mouse DriverKeyboard Driver

Operating System
OS Event

Queue

http://images.google.ca/imgres?imgurl=http://www.codinghorror.com/blog/images/deck_keyboard.jpg&imgrefurl=http://www.codinghorror.com/blog/archives/000209.html&h=301&w=400&sz=25&hl=en&start=3&sig2=8p7vfjj8vswshdksj4XwFA&tbnid=dEAT8X53VR1P2M:&tbnh=93&tbnw=124&ei=ViilRt-9DYTGiQGws8DIDw&prev=/images?q=keyboard&gbv=2&svnum=10&hl=en�
http://images.google.ca/imgres?imgurl=http://mobilitytoday.com/vbmcms/images/ThinkOutside-Mouse-top.JPG&imgrefurl=http://mobilitytoday.com/archive.php?c=44&type=a&h=412&w=302&sz=7&hl=en&start=4&sig2=ivfkis1nodJx9Q1u1vAjcA&tbnid=KcffRR-Ol9990M:&tbnh=125&tbnw=92&ei=BSmlRubjKcy4igGyoszIDw&prev=/images?q=mouse&gbv=2&svnum=10&hl=en�

University of Toronto

CSC108: Introduction to Computer Programming

57

Input Events: programming model
1. Use an infinite loop to keep checking the event queue
2. When you find the event you are interested in, execute the

relevant code

Mouse DriverKeyboard Driver

Operating System
OS Event

Queue

Your program

University of Toronto

CSC108: Introduction to Computer Programming

58

Use an intermediate GUI library:
• specify specific events you are interested in.
• specify method/function in your code that should be called when an

event you are interested in is received

Input Events: programming model

Mouse DriverKeyboard Driver

Operating System
OS Event

Queue

GUI Library

Your program

University of Toronto

CSC108: Introduction to Computer Programming

59

This Week’s To Do List

 Go through lecture slides – make sure you try the code
snippets

 Try the lecture’s programs posted on course website

	CSC108: Introduction to Computer Programming��Lecture 9
	Slide Number 2
	Linear Search
	Binary Search
	Slide Number 5
	How do we judge if an algorithm is written �efficiently ?
	Introduction to Efficiency
	How is Efficiency Measured?
	How is Efficiency Measured?
	Asymptotic Analysis: Upper Bound
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	id function
	Copying Variables
	Copying Instances of a Class
	The copy Module
	The copy() Function
	The copy() Function
	The copy() Function
	Shallow Copy
	Shallow Copy
	Shallow Copy
	The deepcopy() Function
	Shallow Copy vs. Deep Copy
	Shallow Copy vs. Deep Copy
	The deepcopy() Function
	The deepcopy() Function
	Slide Number 30
	System Methods
	__str__
	__eq__
	__eq__
	Comparisons methods
	__cmp__
	__getitem__
	__contains__
	__len__
	__add__
	Relationships Between Classes
	Association
	Composition
	Public and Private Data: atom class
	Public and Private Data
	Public and Private Data
	Public and Private Data
	Encapsulated Atom
	Why Encapsulate?
	Slide Number 50
	Typical command line program
	Interactive command line program
	Interactive Graphical User Interface
	Interactive Graphical User Interface
	Input Events
	Input Events
	Input Events
	Input Events: programming model
	Input Events: programming model
	This Week’s To Do List

