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Searching
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Linear Search
def linear_search(lst,item):

if __name__ == "__main__":

print linear_search([9,1,5,7,8,3,4,6],6)
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Binary Search
def binary_search(lst,item):

if __name__ == "__main__":

print binary_search([9,1,5,7,8,3,4,6],6)
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Efficiency
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How do we judge if an algorithm is written 
efficiently ?
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 Possible measures of efficiency:
̶ development time (code & test)
̶ program size
̶ run time*
̶ memory usage*
̶ bandwidth

 In general, “efficiency” taken to mean time & space
 What’s wrong with just running the code (stopwatch 

approach)?
̶ influenced by hardware
̶ influenced by system software
̶ influenced by other activity
̶ influenced by data selection

 Better to just analyse code, independent of these factors

Introduction to Efficiency
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How is Efficiency Measured?
 Actions of interest:

̶ Comparisons (read a memory value)
̶ Assignments (setting a memory value)

 Why?
̶ memory operations involve extra overhead

• Fastest to slowest: CPU, memory, hard drive, external
̶ memory operations are performed repeatedly
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How is Efficiency Measured?
 Interesting behavior:

̶ worst-case analysis (worst input value and/or structure)
̶ best-case analysis (best input value and/or structure)
̶ average-case analysis (complicated)

 Uninteresting behavior:
̶ Trivial case
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Asymptotic Analysis: Upper Bound

 Growth rate = rate at which an algorithm’s cost 
grows as its input grows

 Algorithm analysis concerns itself with the number 
of “basic operations” required to process input of a 
certain size
̶ “basic operations” are usually memory accesses
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O(1)

O(log n)

O(n)

O(n*log n)

O(n2)

O(n3)

O(2n)

O(nn)
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O(n2) Sorts
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O(n log n) Sorts
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id & copy
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id function
 Recall: variable name is just for us – each variable value is 

stored in a memory cell. 

 Each memory cell has an address.

 E.g.
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Copying Variables
 For immutable objects, 'copying' really involves two separate 

variables referring to the same object. When one is changed, 
it does not affect the other since it's simply referring to a new 
value.

 For mutable objects, this isn't as easy:
>>> x = [1, 2, 3]
>>> y = x
>>> x.append(4)
>>> x
[1, 2, 3, 4]
>>> y
[1, 2, 3, 4]
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Copying Instances of a Class
 Copying a mutable object, even a simple one, involves 

allocating a new space in memory and creating new 
references to the object's components.

 For lists, this can be done using slice notation:
>>> x = [1, 2, 3]
>>> y = x[:]
>>> id(x)
4603616
>>> id(y)
4627672
>>> x.append(4)
>>> y
[1, 2, 3]
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The copy Module
 Python has a built-in module called copy that can copy 

arbitrary objects.
>>> x = [1, 2, 3]
>>> id(x)
4603616
>>> import copy
>>> y = copy.copy(x)
>>> id(y)
4627672
>>> x.append(4)
>>> y
[1, 2, 3]
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The copy() Function
 copy.copy() works on user-defined classes too.

 Using a class – Point – that represents a point with x,y:
>>> import copy
>>> a = Point(1,3)
>>> id(a)
4603616
>>> b = a
>>> id(b)
4603616
>>> b = copy.copy(a)
>>> id(b)
4899521
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The copy() Function
 Consider the class Creature:

class Creature():
def __init__(self,n,limblist):

self.name = n
self.limbs = limblist

>>> import copy
>>> g = Creature("Galgarag", ["wing","wing","claw","tail"])
>>> id(g.limbs)
4356664
>>> g2 = copy.copy(g)
>>> id(g2.limbs)
4356664
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The copy() Function
 While copy() creates a new copy of the instance of a class, it 

does not create new copies of its attributes. Instead, it 
creates references to them.

 Changing a copy's immutable attributes will still not affect the 
original. However, for mutable attributes, the original and the 
copy are still referring to the same actual object, and 
changing it for one will change it for the other.

 copy() is a method that creates a shallow copy of an object: 
a copy containing only references to its attributes.
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Shallow Copy
X = Person()

Phoneslst
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Shallow Copy
X = Person()

Y = copy.copy(X)

Phoneslst
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Shallow Copy
X = Person()

Y = copy.copy(X)

Phoneslst Phoneslst
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The deepcopy() Function
 The copy module has the method deepcopy() that makes a 

deep copy of an object (which includes copying its 
attributes):

>>> import copy
>>> g = Creature("Galgarag", 

["wing","wing","claw","tail"])
>>> id(g.limbs)
4356664
>>> g2 = copy.deepcopy(g)
>>> id(g2.limbs)
4354344
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Shallow Copy vs. Deep Copy
X = Person()

Y = copy.copy(X)

Phoneslst Phoneslst

X = Person()

Phoneslst
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Shallow Copy vs. Deep Copy
X = Person()

Y = copy.copy(X)

Phoneslst Phoneslst

X = Person() Y = copy.deepcopy(X)
Phoneslst Phoneslst
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The deepcopy() Function
 deepcopy() will not only copy the object and its attributes, but 

also its attributes' attributes, as deep as it needs to go.

 Consider the following:
class Body():

def __init__(self):
self.head = Head(self)

class Head():
def __init__(self, b):

self.body = b
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The deepcopy() Function
 If deepcopy() was not implemented carefully, and it had tried 

to copy mutually referring objects, it would have run forever.

 Thankfully, deepcopy() is aware of this and will not enter 
infinite loops of the sort.
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Classes & Objects
(revisited)
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System Methods
 __init__ is an example of system methods
 We will see a few more system methods that are

used with user-defined classes.
 They are all flanked by two underscores and include:

def __str__ ():
'''returns a string representation of the object. '''

def __eq__ ():
'''returns whether two objects of a class are equal. '''

def  __cmp__ ():
'''which determines how objects compare to each other. '''
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__str__
 By default: >>> print apoint

<__main__.Point instance at 0x45d800>

 __str__ returns the string representation of the object, i.e. 
what str(object) should return and how the object is printed.

def __str__(self):
'''Return a string to represent a Point object'''

return '(%d, %d)' % (self.x, self.y)

 After defining __str__:
>>> print apoint
(3, 5)
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__eq__
 __eq__ returns True if two objects are equal, however we 

choose to define equality. It determines what obj1 == obj2 
should return.

 If __eq__ is not defined, obj1 == obj2 will return True iff obj1 
and obj2 are referring to the same object (i.e. the same 
memory address):

>>> x = Point(3,5)
>>> y = Point(3,5)
>>> x == y
False
>>> id(x) == id(y)
False
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__eq__
 __eq__ allows us to specify that two objects do not need to 

be the same object to be equal. With Point objects, perhaps 
we want them to be equal if they refer to the same point:

def __eq__(self, other):
'''Return True iff self == other'''

return self.x == other.x and self.y == other.y

 Now:
>>> x = Point(3,5)
>>> y = Point(3,5)
>>> z = Point(3,4)
>>> x == y
True

>>> x == z
False
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Comparisons methods
 __eq__ is part of a suite of methods which determine the 

action of all comparison operators:

__lt__(self, other) # <
__le__(self, other) # <=
__eq__(self, other) # ==
__ne__(self, other) # !=
__gt__(self, other) # >
__ge__(self, other) # >=
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__cmp__
 __cmp__ is a method that can be used if the other 

comparison methods aren't defined. The result of the 
__cmp__ method determines the relationship between two 
objects of the class:

def __cmp__(self, other):

 It should return a negative number if self is less than other, 0 
if they're equal and a positive number if self is greater than 
other.

 Note that since __cmp__ includes an equality condition, if we 
include __cmp__ we don't need to specifically include 
__eq__.
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__getitem__
 __getitem__ enables the programmer to use  [ ] with a 

custom class 

 Does not make sense unless that class has a list of items 
inside it.

class Building:
def __getitem__ (self, index):

>> mybuilding = Building()
>> mybuilding[1]
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__contains__
 __contains__ enables the programmer to use the 

membership in operator with a custom class 

 Does not make sense unless that class has a list of items 
inside it.

class Building:
def __contains__ (self, item):

>> mybuilding = Building()
>> john            = Person()
>> john  in mybuilding
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__len__
 __len__ enables the programmer to use the function len with 

custom class 

 Does not make sense unless that class has some kind of 
length attribute:

class Street:
def __len__ (self):

>> college_street = Street()
>> length(college_street)
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__add__
 __add__ enables the programmer to add one object to 

another in an expression !

 Does not make sense unless the operation has a meaning for 
the class context!
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Relationships Between Classes
 As the building blocks of more complex systems, objects can 

be designed to interact with each other in one of three ways:

 Association: an object is aware of another object and 
holds a reference to it

 Composition: objects combining to create more complex 
ones

 Inheritance: objects are created as extensions of other 
objects with additional properties
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Association
 In an associative uses relationship, an object is aware of 

another complex object and can communicate with it.

 Example: a Car has an owner attribute which is a Person.
Car

Owner

Person

name

age

sex
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Composition
 In a compositional has-a relationship, an object is made up 

of less complex objects.

 Examples:
̶ A Person has name, age and sex. 
̶ A Movie object is composed of string objects title and genre and 

integer object year. Person

name

age

sex
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Public and Private Data: atom class
class atom:

def __init__(self,atno,x,y,z):
self.atno = atno
self.position = (x,y,z)
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Public and Private Data

 Uptill now all attributes (data) in  a class is public, 
thus we, my mistake,  could do something really 
stupid like

>>> at = atom(6,0.,0.,0.)
>>> at.position = 'Grape Jelly'

that would break any function that used at.position
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Public and Private Data

 We therefore need to protect the at.position and 
provide accessors to this data
̶ Encapsulation or Data Hiding
̶ accessors are "gettors" and "settors"

 Encapsulation is particularly important when other 
developers use your class



University of Toronto

CSC108: Introduction to Computer Programming

46

Public and Private Data

 In Python anything with two leading underscores is 
private

__a, __my_variable
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Encapsulated Atom
class atom:

def __init__(self,atno,x,y,z):
self.atno = atno
self.__position = (x,y,z) #position is private

def getposition(self):
return self.__position

def setposition(self,x,y,z):
self.__position = (x,y,z) 

def translate(self,x,y,z):
x0,y0,z0 = self.__position
self.__position = (x0+x,y0+y,z0+z)
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Why Encapsulate?

 By defining a specific interface you can keep other 
modules from doing anything incorrect to your data

 By limiting the functions you are going to support, 
you leave yourself free to change the internal data 
without messing up your users
̶ Makes code more modular, since you can change large 

parts of your classes without affecting other parts of the 
program, so long as they only use your public functions
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GUI 
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Typical command line program
 Non-interactive

 Linear execution

program:
main()
{

code;
code;
code;
code;
code;
code;
code;
code;
code;
code;
code;
code;

}
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Interactive command line program

 User input commands

 Non-linear execution
 Unpredictable order
 Much idle time

program:
main()
{

decl data storage;
initialization code;

while True:
cmd=getCommand()
if  cmd == 1: 

command1:
code;

command2:
code;

…
}

}
}
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Interactive Graphical User Interface
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Interactive Graphical User Interface
 What’s make a GUI GUI?

̶ Windows
̶ Selection controls: drop-downs, radio-buttons, check 

boxes, menus,..
̶ Activation controls: buttons, icons
̶ Input controls: text fields, text areas
̶ Structure information visually:  lists, grids, trees, labels

Butto
n

Label Text 
field

Check 
Box

Radio 
Butto

n

Combo Box
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Input Events 

Mouse DriverKeyboard Driver

Operating System
OS Event 

Queue

http://images.google.ca/imgres?imgurl=http://www.codinghorror.com/blog/images/deck_keyboard.jpg&imgrefurl=http://www.codinghorror.com/blog/archives/000209.html&h=301&w=400&sz=25&hl=en&start=3&sig2=8p7vfjj8vswshdksj4XwFA&tbnid=dEAT8X53VR1P2M:&tbnh=93&tbnw=124&ei=ViilRt-9DYTGiQGws8DIDw&prev=/images?q=keyboard&gbv=2&svnum=10&hl=en�
http://images.google.ca/imgres?imgurl=http://mobilitytoday.com/vbmcms/images/ThinkOutside-Mouse-top.JPG&imgrefurl=http://mobilitytoday.com/archive.php?c=44&type=a&h=412&w=302&sz=7&hl=en&start=4&sig2=ivfkis1nodJx9Q1u1vAjcA&tbnid=KcffRR-Ol9990M:&tbnh=125&tbnw=92&ei=BSmlRubjKcy4igGyoszIDw&prev=/images?q=mouse&gbv=2&svnum=10&hl=en�
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Input Events

Mouse DriverKeyboard Driver

Operating System
OS Event 

Queue

http://images.google.ca/imgres?imgurl=http://www.codinghorror.com/blog/images/deck_keyboard.jpg&imgrefurl=http://www.codinghorror.com/blog/archives/000209.html&h=301&w=400&sz=25&hl=en&start=3&sig2=8p7vfjj8vswshdksj4XwFA&tbnid=dEAT8X53VR1P2M:&tbnh=93&tbnw=124&ei=ViilRt-9DYTGiQGws8DIDw&prev=/images?q=keyboard&gbv=2&svnum=10&hl=en�
http://images.google.ca/imgres?imgurl=http://mobilitytoday.com/vbmcms/images/ThinkOutside-Mouse-top.JPG&imgrefurl=http://mobilitytoday.com/archive.php?c=44&type=a&h=412&w=302&sz=7&hl=en&start=4&sig2=ivfkis1nodJx9Q1u1vAjcA&tbnid=KcffRR-Ol9990M:&tbnh=125&tbnw=92&ei=BSmlRubjKcy4igGyoszIDw&prev=/images?q=mouse&gbv=2&svnum=10&hl=en�
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Input Events

Mouse DriverKeyboard Driver

Operating System
OS Event 

Queue

http://images.google.ca/imgres?imgurl=http://www.codinghorror.com/blog/images/deck_keyboard.jpg&imgrefurl=http://www.codinghorror.com/blog/archives/000209.html&h=301&w=400&sz=25&hl=en&start=3&sig2=8p7vfjj8vswshdksj4XwFA&tbnid=dEAT8X53VR1P2M:&tbnh=93&tbnw=124&ei=ViilRt-9DYTGiQGws8DIDw&prev=/images?q=keyboard&gbv=2&svnum=10&hl=en�
http://images.google.ca/imgres?imgurl=http://mobilitytoday.com/vbmcms/images/ThinkOutside-Mouse-top.JPG&imgrefurl=http://mobilitytoday.com/archive.php?c=44&type=a&h=412&w=302&sz=7&hl=en&start=4&sig2=ivfkis1nodJx9Q1u1vAjcA&tbnid=KcffRR-Ol9990M:&tbnh=125&tbnw=92&ei=BSmlRubjKcy4igGyoszIDw&prev=/images?q=mouse&gbv=2&svnum=10&hl=en�
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Input Events: programming model
1. Use an infinite loop to keep checking the event queue 
2. When you find the event you are interested in, execute the 

relevant code 

Mouse DriverKeyboard Driver

Operating System
OS Event 

Queue

Your program
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Use an intermediate GUI library:
• specify specific events you are interested in.
• specify method/function in your code that should be called when an 

event you are interested in is received

Input Events: programming model

Mouse DriverKeyboard Driver

Operating System
OS Event 

Queue

GUI Library

Your program
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This Week’s To Do List

 Go through lecture slides – make sure you try the code 
snippets

 Try the lecture’s programs posted on course website
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