
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 27

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

Structure

 Example
struct card {

char *face;

char *suit;

};

 card is the structure name and is used to
declare variables of the structure type

 card contains two members of type char *
 These members are face and suit

face

suit

card

Structure Operations

 Valid Operations
 Assigning a structure to a structure of the

same type =
 Taking the address of a structure: &
 Accessing union members: .
 Accessing union members using pointers: ->
 Using the sizeof operator to determine the

size of a structure

 1 /*

 2 Using the structure member and

 3 structure pointer operators */

 4 #include <stdio.h>

 5
 6 /* card structure definition */

 7 struct card {

 8 char *face; /* define pointer face */

 9 char *suit; /* define pointer suit */

10 }; /* end structure card */
11
12 int main(void)
13 {
14 struct card aCard; /* define one struct card variable */
15 struct card *cardPtr; /* define a pointer to a struct card */
16
17 /* place strings into aCard */
18 aCard.face = "Ace";
19 aCard.suit = "Spades";

Structure definition

Structure definition must end with semicolon

Dot operator accesses members of a structure

20
21 cardPtr = &aCard; /* assign address of aCard to cardPtr */
22
23 printf("%s%s%s\n%s%s%s\n%s%s%s\n", aCard.face, " of ", aCard.suit,
24 cardPtr->face, " of ", cardPtr->suit,
25 (*cardPtr).face, " of ", (*cardPtr).suit);
26
27 return 0; /* indicates successful termination */
28
29 } /* end main */

Ace of Spades
Ace of Spades
Ace of Spades

Arrow operator accesses
members of a structure
pointer

 Member variable names duplicated between
structure types are not a problem.

 super_grow.quantity and apples.quantity are
different variables stored in different locations

struct FertilizerStock
{

double quantity;
double nitrogen_content;

} super_grow;

struct CropYield
{

int quantity;
double size;

} apples;

Structures and Duplicate Names

Structures as Arguments

 Structures can be arguments in function calls
 Parameter can be call-by-value or call-by-

reference

 Example:
void print_employee (struct Employee employee)
 Uses the structure type Employee we saw

earlier as the type for a call-by-reference
parameter

Structures as Arguments

struct Employee
{

char* strName;
char* strAddress;
int Salary;
int SIN;

};
…….
void print_employee (struct Employee employee)
{

printf(“ Employee Name: %s”, employee.strName);
printf(“ Employee Address: %s”, employee.strAddress);
printf(“ Employee Salary: %d”, employee.Salary);
printf(“ Employee SIN: %d”, employee.SIN);

}

Structures as Arguments

void print_employee (struct Employee employee)
{

printf(“ Employee Name: %s”, employee.strName);
printf(“ Employee Address: %s”, employee.strAddress);
printf(“ Employee Salary: %d”, employee.Salary);
printf(“ Employee SIN: %d”, employee.SIN);

}

void print_all_employees(struct Employee arrEmployees[], int nSize)
{

for(nCount =0; nCount < nSize; nCount++)
print_employee(arrEmployees[nCount]);

}

Structures as Return Types
 Structures can be the type of a value returned by

a function

 E.g.
struct Employee
{

char* strName;
char* strAddress;
int Salary;
int SIN;

};

struct Employee create_new_employee()
{

struct Employee employee;

employee.strName = “”;
employee.strAddress= “”;
employee.Salary = -1;
employee.SIN = -1;

return employee;
}

 Structures can contain member variables that are
also structures

 struct PersonInfo contains a Date structure

struct Date
{

int month;
int day;
int year;

};

struct PersonInfo
{

double height;
int weight;
struct Date birthday;

};

Hierarchical Structures

struct Date
{

int month;
int day;
int year;

};

struct PersonInfo
{

double height;
int weight;
struct Date birthday;

} person;

Hierarchical Structures

person
height

weight

month

day
year

birthday

struct Date
{

int month;
int day;
int year;

};

struct PersonInfo
{

double height;
int weight;
struct Date birthday;

};

Hierarchical Structures

void print_person_info(struct PersonInfo person)
{

printf(“ Height is %f \n”, person.height);
printf(“ Weight is %d \n”, person.weight);
printf(“ Birth Month is %d \n”, person.birthday.month);
printf(“ Birth day is %d \n”, person.birthday.day);
printf(“ Birth Year is %d \n”, person.birthday.year);

}

	CSC180: Lecture 27
	Structure
	Structure Operations
	Slide Number 4
	Slide Number 5
	Structures and Duplicate Names
	Structures as Arguments
	Structures as Arguments
	Structures as Arguments
	Structures as Return Types
	Hierarchical Structures
	Hierarchical Structures
	Hierarchical Structures

