
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 29

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

Enumeration

 Enumeration is a user-defined data type. It is defined using the
keyword enum and the syntax is:

enum tag_name {name_0, …, name_n} ;

 The tag_name is not used directly. The names in the braces
are symbolic constants that take on integer values from zero
through n. As an example, the statement:

enum colors { red, yellow, green } ;
 creates three constants. red is assigned the value 0, yellow is

assigned 1 and green is assigned 2.

Enumeration Example
/* This program uses enumerated data types to access the elements of

an array */
#include <stdio.h>
int main() {

int March[5][7]={{0,0,1,2,3,4,5},{6,7,8,9,10,11,12},
{13,14,15,16,17,18,19},{20,21,22,23,24,25,26},
{27,28,29,30,31,0,0}};

enum days {Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday};
enum week {week_one, week_two, week_three, week_four,
week_five};

printf ("Monday the third week of March is: March
%d\n", March [week_three] [Monday]);

return 0;
}

Enumeration
 Values can be set explicitly with =

 Example:
enum Months { JAN =1, FEB, MAR, APR, MAY , JUN,

JUL, AUG, SEP, OCT, NOV, DEC};

 Creates a new type enum Months in which the
identifiers are set to the integers 1 to 12

File I/O

File

 A stream of bytes
 Text file: user readable
 Binary file: machine readable

Access Files

 What operations we can do with a file?
 Open
 Read / Write
 Close

Your c code
A data file

Read/write

Access File by File Pointer

 File pointer: declare for each file used
 Declared as

FILE *filepointername;

Example:
FILE *infile, *outfile;

What’s in a FILE struct?

 Name
C:\myinput.txt

 Read/Write
 Type (binary or ASCII text)
 Access (security; single/multiple user)
 Current Reading/Writing Position in the file
 …

fopen(filename, file_access)

 filename is the location + name of the file to open
 A CString “C:\\myfile.txt”

File i/o function calls

fopen(filename, file_access)

 File_access
 t: text
 b:binary
 r: read (for input)
 w: write (for output)

 If file not exist, create it
 If file exists, erase file content (writes over it)

 a: append to end of file, for updating
 If file not exist, create it

 r+: read and write to a file; do not overwrite the old file
 w+: read and write destroy and create a new file
 a+: read and append and create a new file

File i/o function calls

File i/o function calls

fopen(filename, file_access)

 returns:
file_handle, that is the address of FILE

(a FILE *) on success
or
NULL (zero) on failure

File i/o function calls

fclose(file_handle)

 Closes a file
 This is recommended for input files (to free up

system resources)
 This is required for output files (as often times the

O/S does not write the last bit of a file out to the
disk until the file is closed).

File i/o function calls

fprintf(file_handle, format_specifier, 0 or more
variables)

 file_handle: is address returned by fopen()
 format_specifier: same as for printf()
 0 or more variables: same as printf()

fscanf(file_handle,format_specifier,
1 or more variable address)

 file_handle: is address returned by fopen()
 Read like scanf does, just from a file

 Returns number of arguments read and assigned
or EOF if end of file is reached before anything is
assigned

File i/o function calls

Sample program

 Read three integer values from the file
myinput.txt

 Determine sum and average
 Write the original three values as well as the sum

and average to the file myoutput.txt

The program (part 1)
#include <stdio.h>
#include <stdlib.h>

void main()
{

FILE *infile;
FILE *outfile;
int x,y,z,sum;
float avg;

// Open input file, exit if error
infile=fopen("myinput.txt","r+t");
if (infile==NULL)
{

printf("Error opening myinput.txt\n");
exit(0);

}

// Generally file opens are done as below
if ((outfile=fopen("myoutput.txt","w+t"))==NULL)
{

printf("Error opening myoutput.txt\n");
exit(0);

}

The program (part 2)
// read the three values

// its a good idea to account for \n's in the file

fscanf(infile,"%d\n",&x);

fscanf(infile,"%d\n",&y);

fscanf(infile,"%d\n",&z);

// sum and avg

sum = x+y+z;

avg = (float)sum/3.0;

// print out values

fprintf(outfile,"Values: %d, %d, %d\n",x,y,z);

fprintf(outfile,"Sum: %d\n",sum);

fprintf(outfile,"Avg: %7.2f\n",avg);

// close the files

fclose(infile);

fclose(outfile);

}

fgets(buffer, n, file_handle)

 Reading lines (CStrings)
 buffer is where the line is stored
 n is the max number of characters to be stored in buffer
 file_handle: is address returned by openf()
 Reads characters from file and stores them in buffer
 Stops when ‘\n’ is reached or when n-1 characters have

been read
 Returns NULL on failure and buffer on success

File i/o function calls

fputs(buffer, file_handle)

 Writing CStrings to file
 Writes the contents of buffer to file_handle
 file_handle: is address returned by openf()
 Writes each character until the ‘\0’ is reached

 Does not write ‘\0’ to the file

File i/o function calls

	CSC180: Lecture 29
	Enumeration
	Enumeration Example
	Enumeration
	Slide Number 5
	File
	Access Files
	Access File by File Pointer
	What’s in a FILE struct?
	File i/o function calls
	File i/o function calls
	File i/o function calls
	File i/o function calls
	File i/o function calls
	File i/o function calls
	Sample program
	The program (part 1)
	The program (part 2)
	File i/o function calls
	File i/o function calls

