
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 33

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

Linked Lists

Self-Referential Structures

 Self-referential structures
 Structure that contains a pointer to a structure of the same type
 Can be linked together to form useful data structures such as lists, queues,

stacks and trees
 Terminated with a NULL pointer (0)

 Diagram of two self-referential structure objects linked together

struct node {
int data;
struct node *nextPtr;

}

 nextPtr
 Points to an object of type node
 Referred to as a link

100

NULL pointer (points to nothing)Data member and pointer

500…

List Implementation using Linked Lists

 Linked list
 Linear collection of self-referential class objects,

called nodes
 Connected by pointer links
 Accessed via a pointer to the first node of the list
 Link pointer in the last node is set to null to mark

the list’s end

Comparison with Array
1. Arrays

contiguous
direct access of elements
insertion / deletion difficult

2. Linked Lists
noncontiguous
must scan for element
insertion /deletion easy

arrayname

Using a header node
 A header node is just an initial node that exists at

the front of every list, even when the list is empty
 The purpose is to keep the list from being null,

and to point at the first element

twoonehead

numerals

Traversing a SLL (animation)

threetwoone

head

here

here = head;
while(here != NULL)
{

// do something
here = here->pNext;

}

Inserting a node into a SLL

 There are many ways you might want to insert a
new node into a list:
 As the new first element
 As the new last element
 Before a given node (specified by a reference)
 After a given node
 Before a given value
 After a given value

 All are possible, but differ in difficulty

Inserting after (animation)

threetwoone

head

2.5node

Find the node you want to insert after
First, copy the link from the node that's already in the list

Then, change the link in the node that's already in the list

Deleting a node from a SLL

 In order to delete a node from a SLL, you have to
change the link in its predecessor

 This is slightly tricky, because you can’t follow a
pointer backwards

 Deleting the first node in a list is a special case,
because the node’s predecessor is the list header

Deleting an element from a SLL

threetwoone

head

threetwoone

head

• To delete the first element, change the link in the header

• To delete some other element, change the link in its predecessor

• Space occupied by deleted node(s) still have be returned to OS
by calling free

(predecessor)

Doubly-linked lists

 Here is a doubly-linked list (DLL):

 Each node contains a value, a link to its successor (if any),
and a link to its predecessor (if any)

 The header points to the first node in the list and to the last
node in the list (or contains null links if the list is empty)

head

a b c

struct NodeType {
ItemType info;
struct NodeType *next;
struct NodeType *back;

};

Deleting a node from a DLL
 Node deletion from a DLL involves changing two links
 In this example,we will delete node b

 We don’t have to do anything about the links in node b
 Still have to call free on b
 Deletion of the first node or the last node is a special case

head

a b c

newNode = (DLLNode*) malloc (size_of(DLLNode));
newNode->prev = current;
newNode->next = current->next;
newNode->prev->next = newNode;
newNode->next->prev = newNode;
current = newNode;

Inserting into a Doubly Linked List

a c

head
current

Inserting into a Doubly Linked List

a c

head

newNode = (DLLNode*) malloc (size_of(DLLNode));
newNode->prev = current;
newNode->next = current->next;
newNode->prev->next = newNode;
newNode->next->prev = newNode;
current = newNode

b
current

Inserting into a Doubly Linked List

a c

head

newNode = (DLLNode*) malloc (size_of(DLLNode));
newNode->prev = current;
newNode->next = current->next;
newNode->prev->next = newNode;
newNode->next->prev = newNode;
current = newNode

b
current

Inserting into a Doubly Linked List

a c

head

newNode = (DLLNode*) malloc (size_of(DLLNode));
newNode->prev = current;
newNode->next = current->next;
newNode->prev->next = newNode;
newNode->next->prev = newNode;
current = newNode

b
current

newNode = (DLLNode*) malloc (size_of(DLLNode));
newNode->prev = current;
newNode->next = current->next;
newNode->prev->next = newNode;
newNode->next->prev = newNode;
current = newNode

Inserting into a Doubly Linked List

a c

head b
current

newNode = (DLLNode*) malloc (size_of(DLLNode));
newNode->prev = current;
newNode->next = current->next;
newNode->prev->next = newNode;
newNode->next->prev = newNode;
current = newNode

Inserting into a Doubly Linked List

a c

head b
current

newNode = (DLLNode*) malloc (size_of(DLLNode));
newNode->prev = current;
newNode->next = current->next;
newNode->prev->next = newNode;
newNode->next->prev = newNode;
current = newNode

Inserting into a Doubly Linked List

a c

head b
current

DLLs compared to SLLs
 Advantages:

 Can be traversed in
either direction (may be
essential for some
programs)

 Some operations, such
as deletion and inserting
before a node, become
easier

 Disadvantages:
 Requires more space
 List manipulations are

slower (because more
links must be changed)

 Greater chance of
having bugs (because
more links must be
manipulated)

Linked Lists Types
 Types of linked lists:

 Singly linked list
 Begins with a pointer to the first node
 Terminates with a null pointer
 Only traversed in one direction

 Circular, singly linked
 Pointer in the last node points

back to the first node
 Doubly linked list

 Two “start pointers” – first element and last element
 Each node has a forward pointer and a backward pointer
 Allows traversals both forwards and backwards

 Circular, doubly linked list
 Forward pointer of the last node points to the first node and

backward pointer of the first node points to the last node

	CSC180: Lecture 33
	Slide Number 2
	Self-Referential Structures
	List Implementation using Linked Lists
	Comparison with Array
	Using a header node
	Traversing a SLL (animation)
	Inserting a node into a SLL
	Inserting after (animation)
	Deleting a node from a SLL
	Deleting an element from a SLL
	Doubly-linked lists
	Deleting a node from a DLL
	Inserting into a Doubly Linked List
	Inserting into a Doubly Linked List
	Inserting into a Doubly Linked List
	Inserting into a Doubly Linked List
	Inserting into a Doubly Linked List
	Inserting into a Doubly Linked List
	Inserting into a Doubly Linked List
	DLLs compared to SLLs
	Linked Lists Types

