
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 3

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

C

Variables

 Represent storage units in a program
 Used to store/retrieve data over life of program
 Type of variable determines what can be placed

in the storage unit
 Assignment – process of placing a particular

value in a variable
 Variables must be declared before they are

assigned
 The value of a variable can change; A constant

always has the same value

Naming variables

 When a variable is declared it is given a name
 Good programming practices

 Choose a name that reflects the role of the variable in
a program, e.g.
 Good: customer_name, ss_number;
 Bad : cn, ss;

 Don’t be afraid to have long names if it aids in
readability

 Restrictions
 Name must begin with a letter; otherwise, can contain

digits or any other characters. C is CASE SENSITIVE!
Use 31 or fewer characters to aid in portability

Variable Declaration

 All variables must be declared in a C program
before the first executable statement! Examples:

int a, b, c;
float d;

C Variable Names

 Variable names in C may only consist of letters,
digits, and underscores and may not begin with a
digit

 Variable names in C are case sensitive
 ANSI standard requires only 31 or fewer

characters. Enhances portability to follow this rule
 Should be very descriptive

Variable assignment

 After variables are declared, they must (should)
be given values. This is called assignment and it
is done with the ‘=‘ operator. Examples:
float a, b;
int c;
b = 2.12;
c = 200;

C Data Types

Basic C variable types

 There are four basic data types in C:
 char

 A single byte capable of holding one character in
the local character set.

 int
 An integer of unspecified size

 float
 Single-precision floating point

 double
 Double-precision floating point

char variable type

 Represents a single byte (8 bits) of storage
 Internally char is just a number
 Numerical value is associated with character via

a character set.
 ASCII character set used in ANSI C

int variable type

 Represents a signed integer of typically 4 or 8
bytes (32 or 64 bits)

 Precise size is machine-dependent

float and double variable types

 Represent typically 32 and/or 64 bit real numbers

 How these are represented internally and their
precise sizes depend on the architecture. We
won’t obsess over this now.

Declaring variables

 All variables must always be declared before the
first executable instruction in a C program

 Variable declarations are always:
 var_type var_name;

 int age;
 float annual_salary;
 double weight, height; /* multiple vars ok */

 In most cases, variables have no meaningful
value at this stage. Memory is set aside for them,
but they are not meaningful until assigned.

Assigning values to Variables

 Either when they are declared, or at any
subsequent time, variables are assigned values
using the “=“ operator.

 Examples
int age = 52; //joint declaration/assignment
double salary;
salary = 150000.23;
age = 53; //value may change at any time

Assignment, cont.

 Be careful to assign proper type – contract
between declaration and assignments must be
honored
 int x=2.13 /* what is the value of x? */
 double x = 3; /* is this ok? */
 char c = 300; /* ??? */

 General advice
 Don’t obsess too much over this at beginning
 Keep it simple, stick to basic data types
 We will be more pedantic later in the course

C Program Anatomy

/* description of program */

#include <stdio.h>
/* any other includes go here */

int main(){
/* program body */
return 0;
}

 Let’s learn more about the structure of “program
body”

Program Body - declarations

 Always begins with all variable declarations.
Some examples:

int a, b, c; /* declare 3 ints named a,b,c */
int d, e; /* similar to above in two steps */
int f;
int g = 1, h, k=3;
double pi = 3.1415926;

Statements

 Note: all statements end with a semicolon!
 Statements can (with a few exceptions) be

broken across lines or ganged on a single line
 Commas separate multiple declarations
 Blank lines have no effect
 Extra spaces between elements of a statement

has no effect.
 Comments are ignored by the compiler

Program Body – Executable
Statements

 Executable statements always follow variable
declarations/initializations

 Executable statements include any valid C code
that is not a declaration, ie valid C code to do
things like:
 “multiply the value of a by 10 and store the result in b”
 “add 1 to the value of j and test whether it is greater

than the value of k”
 “store 5.2 in the variable x” (ie assignment)
 “print the value of x,y, and z, each on a separate line”

Interactive Programs

input outputcomputation

C Program

printf()

 Sends output to standard out, which for now we
can think of as the terminal screen.

 General form
printf(format descriptor, var1, var2, …);

 format descriptor is composed of
 Ordinary characters

 copied directly to output

 Conversion specification
 Causes conversion and printing of next argument to printf
 Each conversion specification begins with %

Printf() examples

 Easiest to start with some examples
 printf(“%s\n”, “hello world”);

 Translated: “print hello world as a string followed by a newline
character”

 printf(“%d\t%d\n”, j, k);
 Translated: “print the value of the variable j as an integer

followed by a tab followed by the value of the variable k as an
integer followed by a new line.”

 printf(“%f : %f : %f\n”, x, y, z);
 English: “print the value of the floating point variable x,

followed by a space, then a colon, then a space, etc.

More on format specifier

 The format specifier in its simplest form is one of:
 %s

 sequence of characters known as a String
 Not a fundamental datatype in C (really an array of char)

 %d
 Decimal integer (ie base ten)

 %f
 Floating point

 Note that there are many other options. These
are the most common, though, and are more than
enough to get started.

What do program instructions look like?

 A simple program has at least these three main
parts
 variable declaration
 variable initialization
 main body

First C Program

A Simple C Program

 Comments
 Text surrounded by /* and */ is ignored by computer
 Used to describe program

 #include <stdio.h>
 Preprocessor directive

 Tells computer to load contents of a certain file/library
 <stdio.h> allows standard input/output operations

2 A first program in C */
3 #include <stdio.h>
4
5 int main()
6 {
7 printf("Welcome to C!\n");
8
9 return 0;
10 }

Welcome to C!

A Simple C Program, Cont.
 int main()

 C programs contain one or more functions,
exactly one of which must be main

 Parenthesis used to indicate a function
 int means that main "returns" an integer

value
 Braces ({ and }) indicate a block

 The bodies of all functions must be contained in
braces

A Simple C Program:
Printing a Line of Text

 Return 0;

 A way to exit a function
 Return 0, in this case, means that the

program terminated normally

Second C Program

variables: value vs. address

#include <stdio.h>

int main()
{

int X;

X = 20;
printf("The value of X is %d. The address of X is %d\n“, X, &X);

return 0;

}

	CSC180: Lecture 3
	C
	Variables
	Naming variables
	Variable Declaration
	C Variable Names
	Variable assignment
	C Data Types
	Basic C variable types
	char variable type
	int variable type
	float and double variable types
	Declaring variables
	Assigning values to Variables
	Assignment, cont.
	C Program Anatomy
	Slide Number 17
	Program Body - declarations
	Statements
	Program Body – Executable Statements
	Interactive Programs
	printf()
	Printf() examples
	More on format specifier
	What do program instructions look like?
	First C Program
	A Simple C Program
	A Simple C Program, Cont.
	A Simple C Program:�Printing a Line of Text
	Second C Program
	Slide Number 31

