
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 3

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

C

Variables

 Represent storage units in a program
 Used to store/retrieve data over life of program
 Type of variable determines what can be placed

in the storage unit
 Assignment – process of placing a particular

value in a variable
 Variables must be declared before they are

assigned
 The value of a variable can change; A constant

always has the same value

Naming variables

 When a variable is declared it is given a name
 Good programming practices

 Choose a name that reflects the role of the variable in
a program, e.g.
 Good: customer_name, ss_number;
 Bad : cn, ss;

 Don’t be afraid to have long names if it aids in
readability

 Restrictions
 Name must begin with a letter; otherwise, can contain

digits or any other characters. C is CASE SENSITIVE!
Use 31 or fewer characters to aid in portability

Variable Declaration

 All variables must be declared in a C program
before the first executable statement! Examples:

int a, b, c;
float d;

C Variable Names

 Variable names in C may only consist of letters,
digits, and underscores and may not begin with a
digit

 Variable names in C are case sensitive
 ANSI standard requires only 31 or fewer

characters. Enhances portability to follow this rule
 Should be very descriptive

Variable assignment

 After variables are declared, they must (should)
be given values. This is called assignment and it
is done with the ‘=‘ operator. Examples:
float a, b;
int c;
b = 2.12;
c = 200;

C Data Types

Basic C variable types

 There are four basic data types in C:
 char

 A single byte capable of holding one character in
the local character set.

 int
 An integer of unspecified size

 float
 Single-precision floating point

 double
 Double-precision floating point

char variable type

 Represents a single byte (8 bits) of storage
 Internally char is just a number
 Numerical value is associated with character via

a character set.
 ASCII character set used in ANSI C

int variable type

 Represents a signed integer of typically 4 or 8
bytes (32 or 64 bits)

 Precise size is machine-dependent

float and double variable types

 Represent typically 32 and/or 64 bit real numbers

 How these are represented internally and their
precise sizes depend on the architecture. We
won’t obsess over this now.

Declaring variables

 All variables must always be declared before the
first executable instruction in a C program

 Variable declarations are always:
 var_type var_name;

 int age;
 float annual_salary;
 double weight, height; /* multiple vars ok */

 In most cases, variables have no meaningful
value at this stage. Memory is set aside for them,
but they are not meaningful until assigned.

Assigning values to Variables

 Either when they are declared, or at any
subsequent time, variables are assigned values
using the “=“ operator.

 Examples
int age = 52; //joint declaration/assignment
double salary;
salary = 150000.23;
age = 53; //value may change at any time

Assignment, cont.

 Be careful to assign proper type – contract
between declaration and assignments must be
honored
 int x=2.13 /* what is the value of x? */
 double x = 3; /* is this ok? */
 char c = 300; /* ??? */

 General advice
 Don’t obsess too much over this at beginning
 Keep it simple, stick to basic data types
 We will be more pedantic later in the course

C Program Anatomy

/* description of program */

#include <stdio.h>
/* any other includes go here */

int main(){
/* program body */
return 0;
}

 Let’s learn more about the structure of “program
body”

Program Body - declarations

 Always begins with all variable declarations.
Some examples:

int a, b, c; /* declare 3 ints named a,b,c */
int d, e; /* similar to above in two steps */
int f;
int g = 1, h, k=3;
double pi = 3.1415926;

Statements

 Note: all statements end with a semicolon!
 Statements can (with a few exceptions) be

broken across lines or ganged on a single line
 Commas separate multiple declarations
 Blank lines have no effect
 Extra spaces between elements of a statement

has no effect.
 Comments are ignored by the compiler

Program Body – Executable
Statements

 Executable statements always follow variable
declarations/initializations

 Executable statements include any valid C code
that is not a declaration, ie valid C code to do
things like:
 “multiply the value of a by 10 and store the result in b”
 “add 1 to the value of j and test whether it is greater

than the value of k”
 “store 5.2 in the variable x” (ie assignment)
 “print the value of x,y, and z, each on a separate line”

Interactive Programs

input outputcomputation

C Program

printf()

 Sends output to standard out, which for now we
can think of as the terminal screen.

 General form
printf(format descriptor, var1, var2, …);

 format descriptor is composed of
 Ordinary characters

 copied directly to output

 Conversion specification
 Causes conversion and printing of next argument to printf
 Each conversion specification begins with %

Printf() examples

 Easiest to start with some examples
 printf(“%s\n”, “hello world”);

 Translated: “print hello world as a string followed by a newline
character”

 printf(“%d\t%d\n”, j, k);
 Translated: “print the value of the variable j as an integer

followed by a tab followed by the value of the variable k as an
integer followed by a new line.”

 printf(“%f : %f : %f\n”, x, y, z);
 English: “print the value of the floating point variable x,

followed by a space, then a colon, then a space, etc.

More on format specifier

 The format specifier in its simplest form is one of:
 %s

 sequence of characters known as a String
 Not a fundamental datatype in C (really an array of char)

 %d
 Decimal integer (ie base ten)

 %f
 Floating point

 Note that there are many other options. These
are the most common, though, and are more than
enough to get started.

What do program instructions look like?

 A simple program has at least these three main
parts
 variable declaration
 variable initialization
 main body

First C Program

A Simple C Program

 Comments
 Text surrounded by /* and */ is ignored by computer
 Used to describe program

 #include <stdio.h>
 Preprocessor directive

 Tells computer to load contents of a certain file/library
 <stdio.h> allows standard input/output operations

2 A first program in C */
3 #include <stdio.h>
4
5 int main()
6 {
7 printf("Welcome to C!\n");
8
9 return 0;
10 }

Welcome to C!

A Simple C Program, Cont.
 int main()

 C programs contain one or more functions,
exactly one of which must be main

 Parenthesis used to indicate a function
 int means that main "returns" an integer

value
 Braces ({ and }) indicate a block

 The bodies of all functions must be contained in
braces

A Simple C Program:
Printing a Line of Text

 Return 0;

 A way to exit a function
 Return 0, in this case, means that the

program terminated normally

Second C Program

variables: value vs. address

#include <stdio.h>

int main()
{

int X;

X = 20;
printf("The value of X is %d. The address of X is %d\n“, X, &X);

return 0;

}

	CSC180: Lecture 3
	C
	Variables
	Naming variables
	Variable Declaration
	C Variable Names
	Variable assignment
	C Data Types
	Basic C variable types
	char variable type
	int variable type
	float and double variable types
	Declaring variables
	Assigning values to Variables
	Assignment, cont.
	C Program Anatomy
	Slide Number 17
	Program Body - declarations
	Statements
	Program Body – Executable Statements
	Interactive Programs
	printf()
	Printf() examples
	More on format specifier
	What do program instructions look like?
	First C Program
	A Simple C Program
	A Simple C Program, Cont.
	A Simple C Program:�Printing a Line of Text
	Second C Program
	Slide Number 31

