
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 5

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

Simple Functions

Function Syntax

datatype function-name(datatype Parameter1,
datatype Parameter2,…)

{
statement;
statement;
statement;
statement;

return value;
}

inputsnameDatatype of output

output

Function body
(the engine)

Function
header

main is a special function

int main()
{

first-statement-to-executed-in-program;

return 0;
}

input (empty)

name is “reserved” by C

output should be 0 if no
error during program
execution

Output datatype

double func1()
{

……
return …;

}

int func2()
{

……
return …;

}

double func3()
{

……
return …;

}

int main()
{

func3();
return….;

}

Typical C program

Arithmetic Expressions

Arithmetic

 Arithmetic is performed with operators
 + for addition
 - for subtraction
 * for multiplication
 / for division

 Example: storing a product in the variable
total_weight

total_weight = one_weight * number_of_bars;

Arithmetic

 Arithmetic is performed with operators
 + for addition
 - for subtraction
 * for multiplication
 / for division

 Example: storing a product in the variable
total_weight

total_weight = one_weight * number_of_bars;

Results of Operators

 Arithmetic operators can be used with any
numeric type

 An operand is a number or variable
used by the operator

 Result of an operator depends on the types
of operands
 If both operands are int, the result is int
 If one or both operands are double, the result

is double

Division of Doubles

 Division with at least one operator of type double
produces the expected results.

double divisor, dividend, quotient;
divisor = 3;
dividend = 5;
quotient = dividend / divisor;

 quotient = 1.6666…
 Result is the same if either dividend or divisor is

of type int

Division of Integers

 Be careful with the division operator!
 int / int produces an integer result

(true for variables or numeric constants)

int dividend, divisor, quotient;
dividend = 5;
divisor = 3;
quotient = dividend / divisor;

 The value of quotient is 1, not 1.666…
 Integer division does not round the result, the

fractional part is discarded!

Integer Remainders

 % operator gives the remainder from integer
division

int dividend, divisor, remainder;
dividend = 5;
divisor = 3;
remainder = dividend % divisor;

The value of remainder is 2

Arithmetic Expressions

 Use spacing to make expressions readable
 Which is easier to read?

x+y*z or x + y * z

 Precedence rules for operators are the same as
used in your algebra classes

 Use parentheses to alter the order of operations
x + y * z (y is multiplied by z first)

(x + y) * z (x and y are added first)

Operator Shorthand

 Some expressions occur so often that C
contains to shorthand operators for them

 All arithmetic operators can be used this way
 += count = count + 2; becomes

count += 2;
 *= bonus = bonus * 2; becomes

bonus *= 2;
 /= time = time / rush_factor; becomes

time /= rush_factor;
 %= remainder = remainder % (cnt1+ cnt2); becomes

remainder %= (cnt1 + cnt2);

Boolean Expressions

Boolean Expressions

 Boolean expressions are expressions that are
either true or false

 comparison operators such as '>' (greater than)
are used to compare variables and/or numbers
 (hours > 40) Including the parentheses, is the

boolean expression from the wages example
 A few of the comparison operators that use two

symbols (No spaces allowed between the symbols!)
 >= greater than or equal to
 != not equal or inequality
 = = equal or equivalent

AND

 Boolean expressions can be combined into
more complex expressions with
 && -- The AND operator

 True if both expressions are true

 Syntax: (Comparison_1) && (Comparison_2)
 Example: if ((2 < x) && (x < 7))

 True only if x is between 2 and 7
 Inside parentheses are optional but enhance meaning

 Let’s look at the relationship between the semantic
and logical operator known as the AND operator

 Consider:
If the car is fueled AND the engine works,

then the engine will start

AND Operator
Truth Table

F F F
A B Output

F T F
T F F
T T T

 AND means that both
conditions must be true in order
for the conclusion to be true

AND semantics

OR

 | | -- The OR operator (no space!)
 True if either or both expressions are true

 Syntax: (Comparison_1) | | (Comparison_2)

 Example: if ((x = = 1) | | (x = = y))
 True if x contains 1
 True if x contains the same value as y
 True if both comparisons are true

 Another basic operator is the OR

 Consider:
If I have cash OR a credit card,

then I can pay the bill

 OR works such that the output is true, if
either of the two inputs is true

F F F
A B Output

F T T
T F T
T T T

OR Operator
Truth Table

OR Semantics

NOT

 ! -- negates any boolean expression
 !(x < y)

 True if x is NOT less than y

 !(x = = y)
 True if x is NOT equal to y

 ! Operator can make expressions difficult to
understand…use only when appropriate

Inequalities

 Be careful translating inequalities to C
 if x < y < z translates as

if ((x < y) && (y < z))

NOT

if (x < y < z)

Pitfall: Using = or ==

 ' = ' is the assignment operator
 Used to assign values to variables
 Example: x = 3;

 '= = ' is the equality operator
 Used to compare values
 Example: if (x == 3)

 The compiler will accept this error:
if (x = 3)

but stores 3 in x instead of comparing x and 3
 Since the result is 3 (non-zero), the expression is true

Pitfall: short circuit evaluation

 if (bool-expression1 && bool-expression2)
if bool-expression1 is F, why eval bool-expression2 ?

 if (bool-expression1 || bool-expression2)
if bool-expression1 is T, why eval bool-expression2 ?

Pitfall: working with AND, OR and NOT

 !(1 || 0) ANSWER: 0

 !(1 || 1 && 0) ANSWER: 0 (AND is evaluated before OR)

 !((1 || 0) && 0) ANSWER: 1 (Parenthesis are useful)

Simple Flow of Control

Simple Flow of Control

 Flow of control
 The order in which statements are executed

 Branch
 Lets program choose between two alternatives

Branch Example

 To calculate hourly wages there are two choices
 Regular time (up to 40 hours)

 gross_pay = rate * hours;

 Overtime (over 40 hours)
 gross_pay = rate * 40 + 1.5 * rate * (hours - 40);

 The program must choose which of these
to use

Designing the Branch

 Decide if (hours >40) is true
 If it is true, then use

gross_pay = rate * 40 + 1.5 * rate * (hours -
40);

 If it is not true, then use
gross_pay = rate * hours;

Implementing the Branch

 if-else statement is used in C to perform a
branch

 if (hours > 40)
gross_pay = rate * 40 + 1.5 * rate * (hours - 40);

else
gross_pay = rate * hours;

if-else Flow Control (1)

 if (boolean expression)
true statement

else
false statement

 When the boolean expression is true
 Only the true statement is executed

 When the boolean expression is false
 Only the false statement is executed

if-else Flow Control (2)

 if (boolean expression)
{

true statements
}

else
{

 false statements
}

 When the boolean expression is true
 Only the true statements enclosed in { } are executed

 When the boolean expression is false
 Only the false statements enclosed in { } are executed

Compound Statements

 A compound statement is more than one
statement enclosed in { }

 Branches of if-else statements often need to
execute more that one statement

 Example: if (boolean expression)
{

true statements….
}

else
{

false statements….
}

Branches Conclusion

 Can you
 Write an if-else statement that outputs the word

High if the value of the variable score is greater
than 100 and Low if the value of score is at most
100? The variables are of type int.

 Write an if-else statement that outputs the word
Warning provided that either the value of the variable
temperature is greater than or equal to 100, or the
of the variable pressure is greater than or equal to
200, or both. Otherwise, the if_else sttement outputs
the word OK. The variables are of type int.

	CSC180: Lecture 5
	Slide Number 2
	Function Syntax
	main is a special function
	Typical C program
	Slide Number 6
	Arithmetic
	Arithmetic
	Results of Operators
	Division of Doubles
	Division of Integers
	Integer Remainders
	Slide Number 13
	Arithmetic Expressions
	Slide Number 15
	Operator Shorthand
	Slide Number 17
	Boolean Expressions
	Slide Number 19
	AND
	Slide Number 21
	OR
	Slide Number 23
	NOT
	Inequalities
	Pitfall: Using = or ==
	Pitfall: short circuit evaluation
	Pitfall: working with AND, OR and NOT
	Slide Number 29
	Simple Flow of Control
	Branch Example
	Designing the Branch
	Implementing the Branch
	Slide Number 34
	if-else Flow Control (1)
	if-else Flow Control (2)
	Compound Statements
	Branches Conclusion

