
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 7

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

Iteration

Loops

 Can you
 Write a function that prints the square of each of the

first 100 numbers (1..99)

 Write a function that computes the factorial of an integer

do-while loop

 A variation of the while loop.

 A do-while loop is always executed at least once
 The body of the loop is first executed
 The Boolean expression is checked after the body

has been executed

The for-Statement

 A for-Statement (for-loop) is another loop
mechanism in C
 Designed for common tasks such as adding

numbers in a given range
 Is sometimes more convenient to use than a

while loop
 Does not do anything a while loop cannot do

 The for loop uses the same components as the
while loop in a more compact form
 for (n = 1; n <= 10; n = n+1)

Initialization Action

Boolean Expression

Update Action

For Loop Dissection

for/while Loop Comparison

 sum = 0;
n = 1;
while(n <= 10) // add the numbers 1 - 10
{

sum = sum + n;
n = n + 1;

}

 sum = 0;
for (n = 1; n <= 10; n = n + 1) //add the numbers 1 - 10
sum = sum + n;

for Loop Alternative

 A for loop can also include a variable declaration
in the initialization action
 for (int n = 1, x = 10, y = 20; n < = 10; n = n + 1, x = x

+10)
This line means
 Create a variable, n, of type int and initialize it with 1
 Continue to iterate the body as long as n <= 10
 Increment n by one after each iteration

for-loop Details

 Initialization and update actions of for-loops
often contain more complex expressions
 Here are some samples

for (n = 1; n < = 10; n = n + 2)

for(n = 0 ; n > -100 ; n = n -7)

for(double x = pow(y,3.0); x > 2.0; x = sqrt(x))

The break-Statement

 There are times to exit a loop before it ends
 If the loop checks for invalid input that would

ruin a calculation, it is often best to end the
loop

 The break-statement can be used to exit a loop
before normal termination
 Be careful with nested loops! Using break only

exits the loop in which the break-statement
occurs

Example

int BreakTest(int breakvalue)
{

int loopcounter = 0;

while (loopcounter < 100)
{

if (loopcounter == breakvalue)
break;

loopcounter = loopcounter + 1;
}
return loopcounter;

}

Designing Loops

Designing Loops

 Designing a loop involves designing

 The body of the loop

 The initializing statements

 The conditions for ending the loop

Sums and Products

 A common task is reading a list of numbers
and computing the sum
 Pseudocode for this task might be:

sum = 0;
repeat the following this_many times

getNextNumber();
sum = sum + next;

end of loop
 This pseudo-code can be implemented with a for-loop

as shown on the next slide

for-loop for a Sum
 The pseudo-code from the previous slide is

implemented as

int sum = 0;
for(int count=1; count <= this_many; count=count+1)

{
next = getNextNumber(count);
// getNextNumber maintains a list of numbers
// and returns the number whose index is count
sum = sum + next;

}
 sum must be initialized prior to the loop body!

for-loop For a Product

 Forming a product is very similar to the sum
example seen earlier

int product = 1;
for(int count=1; count <= this_many; count = count + 1)
{

next = getNextNumber(count);
// getNextNumber maintains a list of numbers
// and returns the number whose index is count

product = product * next;
}

 product must be initialized prior to the loop body
 Notice that product is initialized to 1, not 0!

Ending a Loop

 The are four common methods to terminate
an input loop
 List headed by size

 When we can determine the size of the list beforehand

 Ask before iterating
 Ask if the user wants to continue before each iteration

 List ended with a special value
 Using a particular value to signal the end of the list

List Headed By Size

 The for-loops we have seen provide a natural
implementation of the list headed by size
method of ending a loop
 Example:

int items, number;
items = getListSize();
for(int count = 1; count <= items; count = count + 1)
{

number = getNumberbyIndex(count);
// getNumberbyIndex maintains a list of numbers
// and returns the number whose index is count

// statements to process the number
}

Ask Before Iterating

 A while loop is used here to implement the ask
before iterating method to end a loop

int sum = 0;
char ans = 'n';

ans = getUserAnswertoQuestion(“Is there a new set of
numbers?”);

while ((ans == 'Y') || (ans == 'y'))
{

//statements to read and process the numbers
ans = getUserAnswertoQuestion(“Is there a new set of

numbers?”);
}

List Ended With a Special Value
 A while loop is typically used to end a loop using

the list ended with a special value method

printf(“Enter a list of nonnegative integers.\n"
Place a negative integer after the list \n";

int counter = 0;
number = getNumberByIndex(0);
while (number > 0)
{

//statements to process the number

counter = counter + 1;
number = getNumberByIndex(counter);

}
 Notice that the special value is read, but not processed

	CSC180: Lecture 7
	Slide Number 2
	Loops
	do-while loop
	Slide Number 5
	Slide Number 6
	The for-Statement
	Slide Number 8
	For Loop Dissection
	for/while Loop Comparison
	for Loop Alternative
	for-loop Details
	The break-Statement
	Example
	Slide Number 15
	Designing Loops
	Sums and Products
	for-loop for a Sum
	for-loop For a Product
	Ending a Loop
	List Headed By Size
	Ask Before Iterating
	List Ended With a Special Value

