
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 8

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

General Methods To Control Loops

 Three general methods to control any loop

 Count controlled loops

 Ask before iterating

 Exit on flag condition

Count Controlled Loops

 Count controlled loops are loops that determine
the number of iterations before the loop begins

 The list headed by size is an example of a
count controlled loop for input

Exit on Flag Condition

 Loops can be ended when a particular flag
condition exists
 A variable that changes value to indicate that

some event has taken place is a flag

 Examples of exit on a flag condition for input
 List ended with a special value

Exit on Flag Pitfall

 Consider this loop to identify a student with a
grade of 90 or better

int n = 1;
grade = compute_grade(n);
while (grade < 90)
{

n = n +1;
grade = compute_grade(n);

}

printf("Student number %d has a score %d “, n, grade);

The Problem

 The loop on the previous slide might not stop at
the end of the list of students if no student has a
grade of 90 or higher
 It is a good idea to use a second flag to ensure

that there are still students to consider
 The code on the following slide shows a better

solution

The Exit On Flag Solution

 This code solves the problem of having no student
grade at 90 or higher

int n=1;
grade = compute_grade(n);
while ((grade < 90) && (n <= number_of_students))
{

n = n + 1;
grade = compute_grade(n);

}

if (grade > 90)
printf("Student number %d has a score %d “, n, grade);

else
printf(“No student has a high score.“);

Nested Loops

 The body of a loop may contain any kind of
statement, including another loop
 When loops are nested, all iterations of the inner loop

are executed for each iteration of the outer loop
 Give serious consideration to making the inner loop

a function call to make it easier to read your program

Example

 Print the factorial of all numbers between 1 and
100

Example

 Print the factorial of all numbers between 1 and
100

Outside loop  iterate on numbers from 1 to 100

Inside loop  for each number calc factorial

Loop pitfalls

 Pitfalls involving loops include

 Off-by-one errors in which the loop executes
one too many or one too few times

 Infinite loops usually result from a mistake
in the Boolean expression that controls
the loop

Fixing Off By One Errors

 Check your comparison:
should it be < or <=?

 Check that the initialization uses the
correct value

0 and <
1 and <=

 Does the loop handle the zero iterations
case?

Fixing Infinite Loops
 Check the direction of inequalities:

< or > ?

 Test for < or > rather than equality (= =)
 E.g. doubles are really only approximations

double Num1, Num2;
while (Num1 < Num2)
vs.
while (Num1 == Num2)

More
Loop Debugging Tips

 Be sure that the mistake is really in the loop
 Trace the variable to observe how the variable

changes
 Tracing a variable is watching its value change during

execution
 Many systems include utilities to help with this

 printf statements can be used to trace a value on
linux/gcc

Debugging Example

 The following code is supposed to conclude
with the variable product containing the product
of the numbers 2 through 5

int next = 2,
product = 1;

while (next < 5)
{

next = next + 1;
product = product * next;

}

Tracing Variables

 Add temporary printf statements to trace variables

int next = 2,
product = 1;

while (next < 5)
{

next = next + 1;
printf("next = %d “, next);
product = product * next;
printf("product= %d“, product);

}

Loop Testing Guidelines

 Every time a program is changed, it must be
retested
 Changing one part may require a change to another

 Every loop should at least be tested using input
to cause:
 Zero iterations of the loop body
 One iteration of the loop body
 One less than the maximum number of iterations
 The maximum number of iteratons

Loop Testing Guidelines

 Every time a program is changed, it must be
retested (Regression testing)
 Changing one part may require a change to another

 Every loop should at least be tested using input
to cause: (Boundary testing)
 Zero iterations of the loop body
 One iteration of the loop body
 One less than the maximum number of iterations
 The maximum number of iteratons

Starting Over

 Sometimes it is more efficient to throw out a
buggy program and start over
 The new program will be easier to read
 The new program is less likely to be as buggy
 You may develop a working program faster

than if you repair the bad code
 The lessons learned in the buggy code will help you

design a better program faster

Data types

Data Types and Expressions

 2 and 2.0 are not the same number
 A whole number such as 2 is of type int
 A real number such as 2.0 is of type double

 Numbers of type int are stored as exact values
 Numbers of type double may be stored as approximate

values due to limitations on number of significant
digits that can be represented

Writing Integer constants

 Type int does not contain decimal points
 Examples: 34 45 1 89

Writing Double Constants

 Type double can be written in two ways
 Simple form must include a decimal point

 Examples: 34.1 23.0034 1.0 89.9

 Floating Point Notation (Scientific Notation)
 Examples: 3.41e1 means 34.1

3.67e17 means
367000000000000000.0

5.89e-6 means 0.00000589

 Number left of e does not require a decimal point
 Exponent cannot contain a decimal point

Other Number Types

 Various number types have different memory
requirements
 More precision requires more bytes of memory
 Very large numbers require more bytes of

memory
 Very small numbers require more bytes of

memory

Integer types

 long or long int (often 4 bytes)
 Equivalent forms to declare very large integers

long big_total;
long int big_total;

 short or short int (often 2 bytes)
 Equivalent forms to declare smaller integers

short small_total;
short int small_total;

Floating point types

 long double (often 10 bytes)
 Declares floating point numbers with up to

19 significant digits

long double big_number;

 float (often 4 bytes)
 Declares floating point numbers with up to

7 significant digits

float not_so_big_number;

Type char

 Computers process character data too
 char

 Short for character
 Can be any single character from the keyboard

 To declare a variable of type char:


char letter;

char literals

 Character literals are enclosed in single quotes

char letter = 'a';

 Strings of characters, even if only one character
is enclosed in double quotes
 "a" is a string of characters containing one character
 'a' is a value of type character

Type Compatibilities

 In general store values in variables of the
same type
 This is a type mismatch:

int int_variable;
int_variable = 2.99;

 If your compiler allows this, int_variable will
most likely contain the value 2, not 2.99

int  double (part 1)

 Variables of type double should not be assigned
to variables of type int

int int_variable;
double double_variable;
double_variable = 2.00;
int_variable = double_variable;

 If allowed, int_variable contains 2, not 2.00

int  double (part 2)

 Integer values can normally be stored in
variables of type double

double double_variable;
double_variable = 2;

 double_variable will contain 2.0

	CSC180: Lecture 8
	General Methods To Control Loops
	Count Controlled Loops
	Exit on Flag Condition
	Exit on Flag Pitfall
	The Problem
	The Exit On Flag Solution
	Nested Loops
	Example
	Example
	Loop pitfalls
	Fixing Off By One Errors
	Fixing Infinite Loops
	More� Loop Debugging Tips
	Debugging Example
	Tracing Variables
	Loop Testing Guidelines
	Loop Testing Guidelines
	Starting Over
	Slide Number 20
	Data Types and Expressions
	Writing Integer constants
	Writing Double Constants
	Other Number Types
	Slide Number 25
	Integer types
	Floating point types
	Type char
	char literals
	Type Compatibilities
	int  double (part 1)
	int  double (part 2)

