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General Methods To Control Loops

 Three general methods to control any loop

 Count controlled loops

 Ask before iterating

 Exit on flag condition



Count Controlled Loops

 Count controlled loops are loops that determine
the number of iterations before the loop begins

 The list headed by size is an example of a 
count controlled loop for input



Exit on Flag Condition

 Loops can be ended when a particular flag 
condition exists 
 A variable that changes value to indicate that 

some event has taken place is a flag

 Examples of exit on a flag condition for input
 List ended with a special value 



Exit on Flag Pitfall

 Consider this loop to identify a student with a 
grade of 90 or better

int n = 1;
grade = compute_grade(n);
while (grade < 90)
{

n  = n +1;
grade = compute_grade(n);

}

printf( "Student number %d  has a score %d “, n, grade );



The Problem

 The loop on the previous slide might not stop at
the end of the list of students if no student has a
grade of 90 or higher
 It is a good idea to use a second flag to ensure 

that there are still students to consider
 The code on the following slide shows a better 

solution



The Exit On Flag Solution

 This code solves the problem of having no student 
grade at 90 or higher 

int n=1;
grade = compute_grade(n);
while (( grade < 90) && ( n <= number_of_students))
{

n = n + 1;
grade = compute_grade(n);

}

if (grade > 90)
printf( "Student number %d  has a score %d “, n, grade );

else
printf(“No student has a high score.“ );



Nested Loops

 The body of a loop may contain any kind of 
statement, including another loop
 When loops are nested, all iterations of the inner loop 

are executed for each iteration of the outer loop
 Give serious consideration to making the inner loop

a function call to make it easier to read your program



Example

 Print the factorial of all numbers between 1 and 
100



Example

 Print the factorial of all numbers between 1 and 
100

Outside loop  iterate on numbers from 1 to 100

Inside loop  for each number calc factorial



Loop pitfalls

 Pitfalls involving loops include

 Off-by-one errors in which the loop executes 
one too many or one too few times

 Infinite loops usually result from a mistake 
in the Boolean expression that controls 
the loop



Fixing Off By One Errors

 Check your comparison: 
should it be < or <=?

 Check that the initialization uses the 
correct value

0  and <
1 and <=

 Does the loop handle the zero iterations 
case?



Fixing Infinite Loops
 Check the direction of inequalities: 

<  or  > ?

 Test for  <  or  >  rather than equality (= =)
 E.g. doubles are really only approximations

double Num1, Num2;
while (Num1 < Num2)    
vs.  
while (Num1 == Num2)



More
Loop Debugging Tips

 Be sure that the mistake is really in the loop
 Trace the variable to observe how the variable

changes 
 Tracing a variable is watching its value change during

execution
 Many systems include utilities to help with this

 printf statements can be used to trace a value on 
linux/gcc 



Debugging Example

 The following code is supposed to conclude
with the variable product containing the product
of the numbers 2 through 5

int next = 2, 
product = 1;

while (next < 5)
{ 

next = next + 1;
product = product * next;

}



Tracing Variables

 Add temporary printf statements to trace variables

int next = 2, 
product = 1;

while (next < 5)
{ 

next      = next + 1;
printf( "next = %d “, next ); 
product = product * next;
printf( "product= %d“, product );

}



Loop Testing Guidelines

 Every time a program is changed, it must be 
retested
 Changing one part may require a change to another

 Every loop should at least be tested using input
to cause:
 Zero iterations of the loop body
 One iteration of the loop body
 One less than the maximum number of iterations
 The maximum number of iteratons



Loop Testing Guidelines

 Every time a program is changed, it must be 
retested   (Regression testing)
 Changing one part may require a change to another

 Every loop should at least be tested using input
to cause:   (Boundary testing)
 Zero iterations of the loop body
 One iteration of the loop body
 One less than the maximum number of iterations
 The maximum number of iteratons



Starting Over

 Sometimes it is more efficient to throw out a 
buggy program and start over
 The new program will be easier to read 
 The new program is less likely to be as buggy
 You may develop a working program faster 

than if you repair the bad code
 The lessons learned in the buggy code will help you 

design a better program faster



Data types



Data Types and Expressions

 2  and 2.0 are not the same number
 A whole number such as 2 is of type int
 A real number such as 2.0 is of type double

 Numbers of type int are stored as exact values
 Numbers of type double may be stored as approximate

values due to limitations on  number of significant 
digits that can be represented



Writing Integer constants

 Type int does not contain decimal points
 Examples:         34  45  1  89



Writing Double Constants

 Type double can be written in two ways
 Simple form must include a decimal point

 Examples:  34.1   23.0034    1.0   89.9

 Floating Point Notation (Scientific Notation)
 Examples: 3.41e1  means 34.1

3.67e17 means 
367000000000000000.0

5.89e-6 means 0.00000589

 Number left of e does not require a decimal point
 Exponent cannot contain a decimal point



Other Number Types

 Various number types have different memory
requirements
 More precision requires more bytes of memory
 Very large numbers require more bytes of 

memory
 Very small numbers require more bytes of 

memory





Integer types

 long  or long int  (often 4 bytes)
 Equivalent forms to declare very large integers

long  big_total;
long int big_total;

 short or short int  (often 2 bytes)
 Equivalent forms to declare smaller integers

short small_total;
short int small_total;



Floating point types

 long double  (often 10 bytes) 
 Declares floating point numbers with up to 

19 significant digits

long double big_number;

 float  (often 4 bytes)
 Declares floating point numbers with up to 

7 significant digits

float not_so_big_number;



Type char

 Computers process character data too
 char

 Short for character
 Can be any single character from the keyboard

 To declare a variable of type char:


char letter;



char literals

 Character literals are enclosed in single quotes

char letter = 'a';

 Strings of characters, even if only one character
is enclosed in double quotes
 "a" is a string of characters containing one character
 'a' is a value of type character



Type Compatibilities

 In general store values in variables of the 
same type
 This is a type mismatch:

int int_variable;
int_variable = 2.99;

 If your compiler allows this, int_variable will
most likely contain the value 2, not 2.99



int  double (part 1)

 Variables of type double should not be assigned
to variables of type int

int int_variable;
double double_variable;
double_variable = 2.00;
int_variable = double_variable;

 If allowed, int_variable contains 2, not 2.00



int  double (part 2)

 Integer values can normally be stored in 
variables of type double

double double_variable;
double_variable = 2;

 double_variable will contain 2.0
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