
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 9

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

Data types

ASCII Table

char int

 The following actions are possible but generally not
recommended!

 It is possible to store char values in integer
variables

int value = 'A';
value will contain an integer representing 'A'

 It is possible to store int values in char
variables

char letter = 65;

I/O

Output via printf

In C, we output to standard output using a printf
statement:

printf("This will be output to stdout.\n");

A printf statement can output a string literal, but
it can also output the value of a variable, a literal
constant or a named constant:

printf("%d", number_of_students);

The statement above outputs to stdout (the
terminal screen) the value of a variable named
number_of_students of type int

Placeholders

printf("%d", number_of_students);

The %d is known as a placeholder: it holds the
place of the value of the variable that we actually
want to output.

Formatted Output with printf

 Placeholders:
%d -- displays an integer
%u -- displays Unsigned integer
%l -- displays a "long“
%e -- displays a floating point value in

exponential notation
%f -- displays a floating point value
%c -- displays a single character
%s -- displays a string of characters

Formatted Output with printf

 Flags used with place holders:
flags are placed between the % and the field
width or format identifier (more than one flag can
be used) e.g. % d

flag

Mixing Literal Text and Variables’ Values

printf("The %d federal income tax on $%f\n",
tax_year, income);

means:
 Output to stdout (the terminal screen)
 the literal text "The ", and then
 the value of the int variable named tax_year,

and then
 the literal text " federal income tax on
$", and then

 the value of the float variable named income,
and then

 a newline.

Placeholder & Variable in Same Statement

/* These printfs are GOOD GOOD GOOD! */
printf("f1=%f, ", f1);
printf("i1=%d, GOOD!\n", i1);

/* These printfs are BAD BAD BAD! */
printf("f2=%f, i2=%d, ");
printf("BAD!\n", f2, i2);

Input via scanf
The printf statement outputs to stdout (the

terminal screen).

Likewise, the scanf statement inputs from stdin (a
user typing at the keyboard).

The scanf statement has a somewhat strange syntax:
scanf("%d", &height_in_cm);

Input via scanf
scanf("%d", &height_in_cm);

This statement says:
 input from stdin (a user typing at the keyboard)
 an int value
 and place it into the memory location associated with

the int variable named height_in_cm.

Input via scanf: Ampersand Before
Variable

The scanf statement has a somewhat strange
syntax:

scanf("%d", &height_in_cm);

Notice the ampersand & before the name of the
variable that you’re inputting into.

Input via scanf Example
#include <stdio.h>

int main ()
{

int height_in_cm;

printf("What’s my height in centimeters?\n");
scanf("%d", &height_in_cm);
printf("My height is %d cm.\n", height_in_cm);

}

% gcc -o read_variable read_variable.c
% read_variable
What’s my height in centimeters?
160
My height is 160 cm.

Reading Multiple Variables with a Single
scanf

C allows inputting multiple variables per scanf
statement. At runtime, when the user types in
the input values, they can separate the individual
input values

 by blank spaces, and/or
 by tabs, and/or
 by carriage returns (newlines).
Blank spaces, tabs and carriage returns, as a

group, are known as white space.

Multiple Variables per scanf Example #1
#include <stdio.h>

int main ()
{

float average_height_in_m;
int number_of_people;

printf("How many people are there in CS180,\n");
printf("and what is their average height ?\n");

scanf("%d %f",&number_of_people, &average_height_in_m);

printf("There are %d people\n", number_of_people);
printf(" with an average height of %f m.\n",

average_height_in_m);

}

printf vs scanf
 printf

 outputs
 to stdout
 CAN (and typically does) contain literal text as well as placeholders
 typically DOES end with a newline
 variable names after the string literal CANNOT be preceded by &

 scanf
 inputs
 from stdin
 CANNOT contain literal text, other than spaces to separate the

placeholders (which are REQUIRED)
 CANNOT contain a newline
 variable names after the string literal MUST be preceded by &

Arrays

Introduction to Arrays

 An array is used to process a collection of data
of the same type
 Examples: A list of names

A list of temperatures
 Why do we need arrays?

 Imagine keeping track of 5 test scores, or 100,
or 1000 in memory
 How would you name all the variables?
 How would you process each of the variables?

Declaring an Array

 An array, named score, containing five variables
of type int can be declared as

int score[5];
 This is like declaring 5 variables of type int:

score[0], score[1], … , score[4]
 The value in brackets is called

 A subscript
 An index

The Array Variables

 The variables making up the array are referred to
as
 Indexed variables
 Subscripted variables
 Elements of the array

 The number of indexed variables in an array is
the declared size, or size, of the array
 The largest index is one less than the size
 The first index value is zero

Array Variable Types

 An array can have indexed variables of any type

 All indexed variables in an array are of the
same type
 This is the base type of the array

 An indexed variable can be used anywhere an
ordinary variable of the base type is used

Using [] With Arrays

 In an array declaration, []'s enclose the size
of the array such as this array of 5 integers:

int score [5];
 When referring to one of the indexed variables,

the []'s enclose a number identifying one of
the indexed variables
 score[3] is one of the indexed variables
 The value in the []'s can be any expression

that evaluates to one of the integers
0 to (size -1)

Indexed Variable Assignment

 To assign a value to an indexed variable, use
the assignment operator:

int n = 2;
score[n + 1] = 99;

 In this example, variable score[3] is assigned
99

 for-loops are commonly used to step through
arrays
 Example: for (i = 0; i < 5; i++)

{
printf(score[i]);

}

First index is 0

Loops And Arrays

Last index is (size – 1)

	CSC180: Lecture 9
	Slide Number 2
	ASCII Table
	char int
	Slide Number 5
	Output via printf
	Placeholders
	Formatted Output with printf
	Formatted Output with printf
	Mixing Literal Text and Variables’ Values
	Placeholder & Variable in Same Statement
	Input via scanf
	Input via scanf
	Input via scanf: Ampersand Before Variable
	Input via scanf Example
	Reading Multiple Variables with a Single scanf
	Multiple Variables per scanf Example #1
	printf vs scanf
	Slide Number 19
	Introduction to Arrays
	Declaring an Array
	The Array Variables
	Array Variable Types
	Using [] With Arrays
	Indexed Variable Assignment
	Loops And Arrays

