
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 12

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

Programming with Arrays

Returning An Array

 Recall that functions can return a value of
type int, double, char, …,

 Functions cannot return arrays

 We learn later how to return a pointer to an array

Programming With Arrays

 The size needed for an array is changeable
 Often varies from one run of a program to

another
 Is often not known when the program is written

 A common solution to the size problem
 Declare the array size to be the largest that

could be needed
 Decide how to deal with partially filled arrays

 When using arrays that are partially filled
 Functions dealing with the array may not need

to know the declared size of the array, only
how many elements are stored in the array

 A parameter, number_used, may be sufficient
to ensure that referenced index values are
legal

 A function such as fill_array(…) needs to know
the declared size of the array

Partially Filled Arrays

Multidimensional Array Parameters

 Recall that the size of an array is not needed
when declaring a parameter:
void display_line(const char a[], int size) {…}

 The base type of a multi-dimensional array must
be completely specified in the parameter
declaration
 void display_page(const char page[] [100],

int size_dimension_1) {…}

C Program Organization

Program Organization: approach 1

float square(float x) {
return x * x;

}

int factorial(int x) {
if (x==1) { return x;}
else { return x * factorial(x-1); }

}

int main()
{

……
}

 Simplest Approach

Program Organization: approach 2

float square(float x);
int factorial(int x);

int main()
{

……
}

float square(float x) {
return x * x;

}
int factorial(int x) {

if (x==1) { return x;}
else { return x * factorial(x-1); }

}

 Forward declaration

Program Organization: approach 3

 Multiple files

 int main() function in a separate file

 Each set of related functions in a separate .c and
.h files

Approach 3 could be used to achieve
modularity
 Module: a unit of organization of a software

system
 groups together some functions, data, types, etc.

 Example: various input/output functions in C's standard

io library.

 Conceals irrelevant information from user of the
function.

 user’s view of a module.

Approach 3 could be used to achieve
modularity
 User’s view of a module:

 describes only what a user needs to know to use
the module

 makes it easier to understand and use

 describes what services the module provides,
but not how it’s able to provide them

Approach 3 could be used to achieve
modularity, how?
 Each pair of c & h file are viewed as an independent

library

 The program = main + library 1 + library 2 + library 3

.c .h .c .h .c .h

Back to “Hello World!”

#include <stdio.h>

int main() {
printf(“Hello World!\n”);
return 0;

}

Include the standard C header
file so that you can call I/O
functions like “printf”.

The entry point of any
program is the “main”
function. It receives no
arguments, and returns
an integer.

printf prints its argument
string to the screen. A
string is denoted by letters
within double quotations.
‘\n’ means newline.

Last line must return a value
before exiting the function.

Header file

 stdio.h is a C standard header file.
 Including it allows you to use functions like printf,

fopen, getchar etc.
 There are other common C standard header files.
 For example, stdlib.h contains the rand function,

and math.h contains math functions like sin, cos,
sqrt etc.

Your Own Header files
 You can create your own header files.
 This is to separate the function declarations from the

function definitions.

float square(float x);
int factorial(int x);

useful.h
#include "useful.h"

float square(float x) {
return x * x;

}

int factorial(int x) {
if (x==1) {

return x;
} else {

return x * factorial(x-1);
}

}

useful.c

Include the header file
 Now, in order for you to use the functions square

and factorial in other files, you’ll need to include
the header file.

#include <stdio.h>
#include “useful.h”

int main() {
float f;
int i;

f = square(3.5);
i = factorial(10);

printf(“The numbers are %f %d\n”, f, i);
return 0;

}

main.c

Include the header file
 Now, in order for you to use the functions square

and factorial in other files, you’ll need to include
the header file.

#include <stdio.h>
#include “useful.h”

int main() {
float f;
int i;

f = square(3.5);
i = factorial(10);

printf(“The numbers are %f %d\n”, f, i);
return 0;

}

main.c

Compiling in Unix

 First, make the object files useful.o and main.o
 Then, link the object files together to create the

executable.

wael@cslin (2)% gcc –c main.c
wael@cslin (3)% gcc –c useful.c
wael@cslin (4)% gcc –o myprog main.o useful.o
wael@cslin (5)% myprog

The –c option reads a source file and creates an object
file. An object file contains compiled binary code, but is
not executable. This line creates the object file main.o

This line creates the object file useful.o

The –o option creates an executable with the immediately
following filename, in this case “myprog.” Supply all the input
files. In this case, the input files are the object files main.o and
useful.oRun the executable

gcc

 Behavior controlled by command-line switches:

-o file output file for object or executable

-Wall all warnings – use always!

-c compile single module (non-main)

-g insert debugging code (gdb)

-l library

-E preprocessor output only

On unix/linux type man gcc to view gcc manual

Compiling in Windows

 Using Microsoft Visual Studio, include all the .c
and .h files in the project.

 Visual Studio will automatically consider all the
dependencies and generate all the necessary
object files.

 Visual Studio will also automatically link the
object files to create an executable.

Preprocessor Directives

 There is a preprocessor or pre-compiler that runs
before the compiler itself…

 Any line in your source code that begins with ‘#’ is
a preprocessor directive. It gives instructions to
the preprocessor.

#include
 The #include instruction tells the preprocessor to append

the file named before compiling.
 Filenames that are enclosed in < > are standard C

libraries. The preprocessor looks for the files in the
standard C library directory (wherever it is installed).

 Filenames that are enclosed in “” are user-written header
files and are loaded from the current directory.

float square(float x);
int factorial(int x);

useful.h

#include "useful.h"

float square(float x) {
return x * x;

}

int factorial(int x) {
if (x==1) { return x;}
else { return x * factorial(x-1); }

}

useful.c

What the compiler actually sees (after preprocessor)

float square(float x);
int factorial(int x);

float square(float x) {
return x * x;

}

int factorial(int x) {
if (x==1) { return x;}
else { return x * factorial(x-1); }

}

#define
 You can define some symbols to be some other strings.
 For example: #define PI 3.14159
 Thus, when the preprocessor encounters the string PI in

the code, it replaces it with 3.14159.
 So, the compiler doesn’t see PI at all. It only sees

3.14159.

#define PI 3.14159

float caclarea(float r) {
return PI * r * r;

}

Source file:

float caclarea(float r) {
return 3.14159 * r * r;

}

What the compiler sees:

#define
 Another common example of the use of #define:

“#define ARRAY_LEN 512”
 When you decide to go to a larger array size,

simply change the line to: “#define ARRAY_LEN
1024”

#define ARRAY_LEN 512

float farray[ARRAY_LEN];

void incArray() {
int i;
for (i=0;i<ARRAY_LEN;i++) {

farray[i] = farray[i] + 1.0;
}

}

Source file:

float farray[512];

void incArray() {
int i;
for (i=0;i<512;i++) {

farray[i] = farray[i] + 1.0;
}

}

What the compiler sees:

Program Comments

 Extensive comments!
 in .h what inputs each function take and what it

does.

 in .c why is this function implemented this way…

Comments

 /* any text until */

 Convention for longer comments:
/*

* AverageGrade()

* Given an array of grades, compute the average.

*/

 Avoid **** boxes – hard to edit, usually look
ragged.

Hungarian Notation: naming convention

 name of a variable indicates its type or intended
use

 E.g.
int nQuantity,
float fPrice,
long lLength,
double dTemperature,
double[] darrTemperatures;
unsigned int unItemsCount,
char cTaxType,
char[] carrName;

http://en.wikipedia.org/wiki/Variable_(computer_science)�
http://en.wikipedia.org/wiki/Data_type�

	CSC180: Lecture 12
	Slide Number 2
	Returning An Array
	Programming With Arrays
	Partially Filled Arrays
	Multidimensional Array Parameters
	Slide Number 7
	Program Organization: approach 1
	Program Organization: approach 2
	Program Organization: approach 3
	Approach 3 could be used to achieve modularity
	Approach 3 could be used to achieve modularity
	Approach 3 could be used to achieve modularity, how?
	Back to “Hello World!”
	Header file
	Your Own Header files
	Include the header file
	Include the header file
	Compiling in Unix
	gcc
	Compiling in Windows
	Preprocessor Directives
	#include
	#define
	#define
	Program Comments
	Comments
	Hungarian Notation: naming convention

