
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 14

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

Recursion

Recursive Functions

 A recursive function contains a call to itself
 When breaking a task into subtasks, it may be

that the subtask is a smaller example of the same
task
 Searching an array could be divided into searching the

first and second halves of the array
 Searching each half is a smaller version of searching

the whole array
 Tasks like this can be solved with recursive functions

A Closer Look at Recursion

 Recursive calls are tracked by
 Temporarily stopping execution at the

recursive call
 The result of the call is needed before proceeding

 Saving information to continue execution later
 Evaluating the recursive call
 Resuming the stopped execution

How Recursion Ends

 Eventually one of the recursive calls must not
depend on another recursive call

 Recursive functions are defined as
 One or more cases where the task is

accomplished by using recursive calls to do a
smaller version of the task

 One or more cases where the task is
accomplished without the use of any recursive
calls
 These are called base cases or stopping cases

"Infinite" Recursion

 A function that never reaches a base case, in
theory, will run forever
 In practice, the computer will run out of

resources and the program will terminate
abnormally

Example: Infinite Recursion

 Function write_vertical, without the base case
void new_write_vertical(int n)

{
new_write_vertical (n /10);
printf(“%d \r\n”, n % 10);

}
will eventually call write_vertical(0), which will
call write_vertical(0),which will call write_vertical(0), which
will call write_vertical(0), which will call write_vertical(0),
which will call write_vertical(0), which will call
write_vertical (0), …

Program Example:
A Powers Function

23 = 8
2 * 2 * 2

92 = 81

 To define a new power function that returns an
int, such that

int y = power(2,3);
places 23 in y
 Use this definition:

xn = xn-1 * x
 Translating the right side to C++ gives:

power(x, n-1) * x
 The base case: n = = 0 and power should

return 1

Program Example:
A Powers Function

 Rethinking Power(2, 3) …. 2* 2 * 2
 power(2, 3) is power(2, 2) * 2
 Power(2, 2) is power(2, 1) * 2
 Power(2, 1) is power(2, 0) * 2
 Power (2, 0) is 1

power(2, 3)

	CSC180: Lecture 14
	Slide Number 2
	Recursive Functions
	A Closer Look at Recursion
	How Recursion Ends
	"Infinite" Recursion
	Example: Infinite Recursion
	Program Example:�A Powers Function
	Program Example:�A Powers Function
	power(2, 3)�
	Slide Number 11

