CSC180: Lecture 15

Wael Aboulsaadat

wael@cs.toronto.edu

http://portal.utoronto.ca/

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

Recursion

how to approach recursion?

Strategy:
- Rewrite the problem definition in a recursive way..
Header:
- What info needed as input and output?
- Write the function header.
- Use a noun phrase for the function name
Spec:
- Write a method specification in terms of the parameters and return
value.
- Include preconditions
Base cases:
1. When is the answer so simple that we know it without recursing?
2. What is the answer in these base cases(s)?
3. Write code for the base case(s)
Recursive Cases:
1. Describe the answer in the other case(s) in terms of the answer on
smaller inputs
2. Simplify if possible
3. Write code for the recursive case(s)

Factorial using Recursion

Nl'=1%2% _ *N

int Factorial (int n) {
int Product = 1,
Scan = 2;
while (Scan <= n)
Product = Preoduct * EScan ;

Scan = Scan + 1 ;

J

return (Product) ;

}

Factorial using Recursion

Nl'=1%2% _ *N

int Factorial (int n) {
int Product = 1,
Scan = 2;
while (Scan <= n)
Product = Preoduct * EScan ;

Scan = Scan + 1 ;

J

return (Product) ;

}

int Factorial(int n) {
if {((n > 1)
return(n * Factorial (n-1));
else

return(l) ;

Factorial using Recursion
Nl =1%*2% . *N

.. and then

the return
R return 120

e - sequence
5 * Fac&orlal (4) — —_
\ \i____—r return 24]

4 * Factorlal (3) _ _

f refurn
N~ o

Fac ial (2) Jf—

N~

2 * Fagtorlal (1)

4

1 refurn 1

3

returmn 2

First the
“recursive
descent” . . .

Binary Search

= Our algorithm is basically:

= Look at the item in the middle
=« If it Is the number we are looking for, we are done

=« If it IS greater than the number we are looking for,
look in the first half of the list

=« If it is less than the number we are looking for, look
In the second half of the list

Execution of the Function search

afo0]
al[l]
al2]
a[3]
a[4]
al[5]
a[6]
al7]
a[8]
af9]

a[0]
a[l]
al[2]
a[3]
a[4]
a[5]
a[6]
al7]
a[8]
al[9]

15
20
35
41
57
63
75
80
85
90

15
20
35
41
57
63
75
80
85
90

key is 63

- first == af0]
a[1]
al2]
a[3]

- mid = a[4]

0+ 9)/2 AlS]
Next alé]

al7]

a[8]

-=——J]ast == 9 al9]

15

20

35

41

57

63

75

80

85

90

Not in
this half

-——Tirst == 5

--—m'ld =

G+ 9/2

-«——Tlast ==

mid = (5 + 6)/2 whichis 5

- first ==

- Jast ==

Tocation

Not here

a[mid] is a[5] == 63
found = true;
= mid;

Binary Search
An lterative Version

Iterative Version of Binary Search

Function Declaration

void search(const int a[], int low_end, int high_end,

int key, bool& found, int& Tlocation);
//Precondition: a[low_end] through alhigh_end] are sorted in increasing
//order.
//Postcondition: If key is not one of the values a[low_end] through
//alhigh_end], then found == false; otherwise, af[location] == key and
//found == true.

Function Definition

void search(const int a[], int low_end, int high_end,
int key, bool& found, 7int& location)
{
int first = low_end;
int Tast = high_end;
int mid;

found = false;//so far
while ((first <= last) && !(found))

{
mid = (first + Tast)/2;
if (key == a[mid])
{
found = true;
Jocation = mid;
}
else if (key < a[mid])
{
last = mid - 1;
}
else if (key > a[mid])
{
first = mid + 1;
}
}

Binary Search
Recursive Version

= Since searching each of the shorter lists is a
smaller version of the task we are working on,
a recursive approach is natural

Binary Search
Recursive Version — pseudo code

= Here is our first refinement:

found = false;

mid = approx. midpoint between first and last;

If (key == a[mid])

{
found = true;
location = mid,;

}

else if (key < a[mid])
search a[first] through a[mid -1]

else if (key > a[mid])
search a[mid +1] through a]last];

Binary Search
Recursive Version — pseudocode

= We must ensure that our algorithm ends

= If key Is found in the array, there is no
recursive call and the process terminates

= What if key is not found in the array?

= At each recursive call, either the value of first is
Increased or the value of last is decreased

=« If first ever becomes larger than last, we know that
there are no more indices to check and key is not in
the array

Pseudocode for Binary Search

int a[Some_Size Value];
Algorithm to search a[first] through a[Tast]

//Precondition:

//al[first]<= a[first + 1] <= a[first + 2] <= ... <= a[last]
To locate the value key:

if (first > last) //A stopping case
found = false;
else

{

mid = approximate midpoint between firstand last;

1f (key == a[mid]) //A stopping case

{
found = true;
Tocation = mid;

}

else if key < a[mid] //A case with recursion
search a[first] througha[mid - 1];

else 1f key > a[mid] //A case with recursion
searcha[mid + 1] throughal[last];

Binary Search
Writing the Code

= Function search implements the algorithm:

= Function search interface:
void search(const int a[|, int first, int last,
Int key, bool& found, int& location);
//precondition: a[0] through a[final_index] are
/] sorted in increasing order

//postcondition: if key is not in a[0] - a[final_index]
// found = = false; otherwise
// found = = true

Binary Search
Checking the Recursion

1) There is no infinite recursion

= On each recursive call, the value of first Is
Increased or the value of last is decreased.
Eventually, if nothing else stops the recursion,
the stopping case of first > last will be called

Binary Search
Checking the Recursion (cont.)

2) Each stopping case performs the correct action

= If first > last, there are no elements between
a[first] and a[last] so key is not in this segment
and it I1s correct to set found to false

« If k = = a[mid], the algorithm correctly sets
found to true and location equal to mid

= Therefore both stopping cases are correct

Binary Search
Checking the Recursion (cont.)

= For each case that involves recursion, if all
recursive calls perform their actions correctly,
then the entire case performs correctly
Since the array Is sorted...

« If key < a[mid], key is in one of elements a[first]
through a[mid-1] if it is in the array. No other
elements must be searched...the recursive call is
correct

« If key > a[mid], key is in one of elements a[mid+1]
through a[last] if it is in the array. No other elements
must be searched... the recursive call is correct

Recursive Function for Binary Search

void search(const int al[], int first, int last,
int key, bool& found, int& Tlocation)

{
int mid;
if (first > last)
{
found = false;
}
else
{
mid = (first + last)/2;
if (key == a[mid])
{
found = true;
location = mid;
}
else if (key < a[mid])
{
search(a, first, mid - 1, key, found, location);
}
else if (key > a[mid])
{
search(a, mid + 1, last, key, found, location);
}
}

Binary Search
Recursive Version

Key = 63

void search(const int a[], int first, int last,
int key‘. bool& found, int& location)

{ _—
int mid; > |15
if (First > last) 0 20
{ 35,

found = false; —
} 4]
else 157
{ 63
mid = (first + last)/2; 75|
if (key == a[mid]) hd
{ 85 9
found = true; 90 | ¢——
location = mid: _
}
else if (key < a[mid])
{
search(a, first, mid - 1, key, found, location);
}
else if (key > a[mid])
{
—pscarch(a, mid + 1, last, key, found, Tlocation);
}
}

Key = 63
void search(const int a[], int first, int last,
int key,| bool& found, int& location)
{ -
int mid; 15
if (first > last) m
{ P—
found = false; i
} 41
else 57
{ S |
mid = (first + last)/2; s
if (key == almid]) ad
{ 85
found = true; 90 | €—a
Jocation = mid; —
}
else if (key < a[mid])
{
m—pscarch(a, first, mid - 1, key, found, location);
}
else if (key > a[mid])
{
search(a, mid + 1, last, key, found, Tocation);
}
}
}

Binary Search
Recursive Version

Key = 63

void search(const int a[], int first, int last,
int key|, bool& found, int& location)

{ _—
int mid; 15
if (first > last) 20
{ 35,

found = false; —
} 4]
else 57
{ 5 » |63
mid = (first + last)/2; 75|
if (key == a[mid]) hd
{ 85
found = true; 90
location = mid: _
}
else if (key < a[mid])
{
—p search(a, first, mid - 1, key, found, Tocation);
}
else if (key > a[mid])
{
search(a, mid + 1, last, key, found, Tocation);
}
}

Key = 63
void search(const int a[], int first, int last,
int key,| bool& found, int& location)
{ -
int mid; 15
;"F (first > Tlast) m
found = false; i
} 41
else 57
e 2 > 6
mid = (first + last)/2; 75 | ——o
» 1f (key == a[mid]) 180
{ 85
found = true; 90|
Jocation = mid; —
}
else if (key < a[mid])
{
search(a, first, mid - 1, key, found, location);
}
else if (key > a[mid])
{
search(a, mid + 1, last, key, found, Tocation);
}
}
}

Pitfall: Stack Overflow

s Because each recursive call causes an activation
frame to be placed on the stack

= Infinite recursion can force the stack to grow
beyond its limits to accommodate all the
activation frames required

= The resultis a stack overflow

= A stack overflow causes abnormal termination
of the program

Recursion Types

= Recursion for Tasks
= E.g. binary search, sorting (later...)

= Recursion for Values
= E.g. power, factorial, etc...

Recursion versus lteration

= Any task that can be accomplished using
recursion can also be done without recursion

= A nonrecursive version of a function typically
contains a loop or loops

= A non-recursive version of a function is usually
called an iterative-version
= A recursive version of a function
= Usually runs slower
= Uses more storage

=« May use code that is easier
to write and understand

	CSC180: Lecture 15
	Slide Number 2
	how to approach recursion?
	Factorial using Recursion
	Factorial using Recursion
	Factorial using Recursion
	Binary Search�
	Slide Number 8
	Binary Search�An Iterative Version
	Slide Number 10
	Binary Search�Recursive Version
	Binary Search�Recursive Version – pseudo code
	Binary Search� Recursive Version – pseudocode
	Slide Number 14
	Binary Search�Writing the Code
	Binary Search�Checking the Recursion
	Binary Search�Checking the Recursion (cont.)
	Binary Search�Checking the Recursion (cont.)
	Slide Number 19
	Binary Search�Recursive Version
	Binary Search�Recursive Version
	Pitfall: Stack Overflow
	Recursion Types�
	Recursion versus Iteration

