
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 15

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

Recursion

how to approach recursion?
1. Strategy:

- Rewrite the problem definition in a recursive way..
2. Header:

- What info needed as input and output?
- Write the function header.
- Use a noun phrase for the function name

3. Spec:
- Write a method specification in terms of the parameters and return

value.
- Include preconditions

4. Base cases:
1. When is the answer so simple that we know it without recursing?
2. What is the answer in these base cases(s)?
3. Write code for the base case(s)

5. Recursive Cases:
1. Describe the answer in the other case(s) in terms of the answer on

smaller inputs
2. Simplify if possible
3. Write code for the recursive case(s)

Factorial using Recursion

Factorial using Recursion

Factorial using Recursion

Binary Search

 Our algorithm is basically:
 Look at the item in the middle

 If it is the number we are looking for, we are done
 If it is greater than the number we are looking for,

look in the first half of the list
 If it is less than the number we are looking for, look

in the second half of the list

Binary Search
An Iterative Version

Binary Search
Recursive Version

 Since searching each of the shorter lists is a
smaller version of the task we are working on,
a recursive approach is natural

Binary Search
Recursive Version – pseudo code

 Here is our first refinement:
found = false;
mid = approx. midpoint between first and last;
if (key == a[mid])
{

found = true;
location = mid;

}
else if (key < a[mid])

search a[first] through a[mid -1]
else if (key > a[mid])

search a[mid +1] through a[last];

 We must ensure that our algorithm ends
 If key is found in the array, there is no

recursive call and the process terminates
 What if key is not found in the array?

 At each recursive call, either the value of first is
increased or the value of last is decreased

 If first ever becomes larger than last, we know that
there are no more indices to check and key is not in
the array

Binary Search
Recursive Version – pseudocode

Binary Search
Writing the Code

 Function search implements the algorithm:
 Function search interface:

void search(const int a[], int first, int last,
int key, bool& found, int& location);

//precondition: a[0] through a[final_index] are
// sorted in increasing order

//postcondition: if key is not in a[0] - a[final_index]
// found = = false; otherwise
// found = = true

Binary Search
Checking the Recursion

1) There is no infinite recursion
 On each recursive call, the value of first is

increased or the value of last is decreased.
Eventually, if nothing else stops the recursion,
the stopping case of first > last will be called

Binary Search
Checking the Recursion (cont.)

2) Each stopping case performs the correct action
 If first > last, there are no elements between

a[first] and a[last] so key is not in this segment
and it is correct to set found to false

 If k = = a[mid], the algorithm correctly sets
found to true and location equal to mid

 Therefore both stopping cases are correct

Binary Search
Checking the Recursion (cont.)

 For each case that involves recursion, if all
recursive calls perform their actions correctly,
then the entire case performs correctly
Since the array is sorted…
 If key < a[mid], key is in one of elements a[first]

through a[mid-1] if it is in the array. No other
elements must be searched…the recursive call is
correct

 If key > a[mid], key is in one of elements a[mid+1]
through a[last] if it is in the array. No other elements
must be searched… the recursive call is correct

Binary Search
Recursive Version

Key = 63 Key = 63

0

9

5

9

Binary Search
Recursive Version

Key = 63 Key = 63

5
65

7

Pitfall: Stack Overflow

 Because each recursive call causes an activation
frame to be placed on the stack
 infinite recursion can force the stack to grow

beyond its limits to accommodate all the
activation frames required

 The result is a stack overflow
 A stack overflow causes abnormal termination

of the program

Recursion Types

 Recursion for Tasks
 E.g. binary search, sorting (later…)

 Recursion for Values
 E.g. power, factorial, etc…

 Any task that can be accomplished using
recursion can also be done without recursion
 A nonrecursive version of a function typically

contains a loop or loops
 A non-recursive version of a function is usually

called an iterative-version
 A recursive version of a function

 Usually runs slower
 Uses more storage
 May use code that is easier

to write and understand

Recursion versus Iteration

	CSC180: Lecture 15
	Slide Number 2
	how to approach recursion?
	Factorial using Recursion
	Factorial using Recursion
	Factorial using Recursion
	Binary Search�
	Slide Number 8
	Binary Search�An Iterative Version
	Slide Number 10
	Binary Search�Recursive Version
	Binary Search�Recursive Version – pseudo code
	Binary Search� Recursive Version – pseudocode
	Slide Number 14
	Binary Search�Writing the Code
	Binary Search�Checking the Recursion
	Binary Search�Checking the Recursion (cont.)
	Binary Search�Checking the Recursion (cont.)
	Slide Number 19
	Binary Search�Recursive Version
	Binary Search�Recursive Version
	Pitfall: Stack Overflow
	Recursion Types�
	Recursion versus Iteration

