
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 16

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

Pitfall: Stack Overflow

 Because each recursive call causes an activation
frame to be placed on the stack
 infinite recursion can force the stack to grow

beyond its limits to accommodate all the
activation frames required

 The result is a stack overflow
 A stack overflow causes abnormal termination

of the program

Recursion Types

 Recursion for Tasks
 E.g. binary search, sorting (later…)

 Recursion for Values
 E.g. power, factorial, etc…

 Any task that can be accomplished using
recursion can also be done without recursion
 A nonrecursive version of a function typically

contains a loop or loops
 A non-recursive version of a function is usually

called an iterative-version
 A recursive version of a function

 Usually runs slower
 Uses more storage
 May use code that is easier

to write and understand

Recursion versus Iteration

Pointers

 a memory address of a computer which may
contain other variable or even another pointer

Pointers intro

3451

22
5000

5000

5000
34515000

22

 General form of pointer declaration is:

type *name;

E.g.
int *pnValue;
float *pfValue;
char *pcValue;

int *pnValue, *pnIndex;

Pointer variable

 You can initialize a pointer to null using 2 methods
as shown below -

variable_type *pointer_name = 0;

or

variable_type *pointer_name = NULL;

NULL is defined in many standard headers such as <stdio.h>.

Pointers initialization

 assign value of one pointer to another using
assignment operator '='

 right hand side points to memory address of
variable stored in left hand side pointer. As a result
both pointers point to same memory location

Pointer assignment

#include <stdio.h>

int main ()
{

char ch = a;
char* p1, *p2;

p1 = &ch;

p2 = p1; // Pointer Assignment Taking Place

printf (" *p1 = %c And *p2 = %c", *p1,*p2); // Prints 'a' twice

return 0;
}

Pointer assignment - example

#include <stdio.h>

int main ()
{

char ch = a;
char* p1, *p2;

p1 = &ch;

p2 = p1; // Pointer Assignment Taking Place

printf (" *p1 = %c And *p2 = %c", *p1,*p2); // Prints 'a' twice

return 0;
}

Pointer assignment - example

a
chp1

p2

(1231)

#include <stdio.h>

int main ()
{

char ch = a;
char* p1, *p2;

p1 = &ch;

p2 = p1; // Pointer Assignment Taking Place

printf (" *p1 = %c And *p2 = %c", *p1,*p2); // Prints 'a' twice

return 0;
}

Pointer assignment - example

a
chp1

p2

1231
(1231)

#include <stdio.h>

int main ()
{

char ch = a;
char* p1, *p2;

p1 = &ch;

p2 = p1; // Pointer Assignment Taking Place

printf (" *p1 = %c And *p2 = %c", *p1,*p2); // Prints 'a' twice

return 0;
}

Pointer assignment - example

a
chp1

p2

1231
(1231)

1231

 Pointer conversion involves changing the type the
pointer is pointing to

 Null pointer: a pointer which points to nothing.
 Infact it points to the base address of your CPU registers and

since register is not addressable  will lead to crash or at
minimum a segmentation fault.

 Void pointer: technically is a pointer which is
pointing to the unknown.
 Void pointer has special property that it can be type

casted (i.e. change type) into any other pointer

Pointer conversion

Pointer conversion - example
#include <stdio.h>

int main ()
{

int i = 10;
char *p1
int *p2;

p2 = &i;

p1 = (char *) p2; // Type Casting and Pointer Conversion

printf (" *p1 = %c And *p2 = %d", *p1,*p2);

return 0;
}

 Not all arithmetic operations are defined in
pointers.
 You can increment them,
 You can decrement them,
 You can add and subtract integer values from

them.
 You even can subtract two pointers.

 But you cannot add two pointers, mulitply,
divide,modulus them. You can not also add or
subtract values other than integer.

Pointers arithmetic

 if X pointer is char type(assumed 1 Byte or 8Bit long) than X = X + 1 will
have value 1001 and X = X - 1 will have value 999.

 if X pointer is integer type (assumed 2 byte or 32 bit long) than X = X + 1
will have value 1002 and X = X - 1 will have value 998.

 if X pointer is float type (assumed 4 Byte or 32Bit long) than X = X + 1 will
have value 1004 and X = X - 1 will have value 9996.

 Reason: when you increment a pointer of certain base type it increase it
value in such a way that it points to next element of its base type. If you
decrement a pointer its value decrease in such a way that it points to
previous value of its base type. So increment as well as decrement in fixed
quanta of size of the base type.

Pointers arithmetic - examples

	CSC180: Lecture 16
	Pitfall: Stack Overflow
	Recursion Types�
	Recursion versus Iteration
	Slide Number 5
	Pointers intro
	Pointer variable
	Pointers initialization
	Pointer assignment
	Pointer assignment - example
	Pointer assignment - example
	Pointer assignment - example
	Pointer assignment - example
	Pointer conversion
	Pointer conversion - example
	Pointers arithmetic
	Pointers arithmetic - examples

