
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 16

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

Pitfall: Stack Overflow

 Because each recursive call causes an activation
frame to be placed on the stack
 infinite recursion can force the stack to grow

beyond its limits to accommodate all the
activation frames required

 The result is a stack overflow
 A stack overflow causes abnormal termination

of the program

Recursion Types

 Recursion for Tasks
 E.g. binary search, sorting (later…)

 Recursion for Values
 E.g. power, factorial, etc…

 Any task that can be accomplished using
recursion can also be done without recursion
 A nonrecursive version of a function typically

contains a loop or loops
 A non-recursive version of a function is usually

called an iterative-version
 A recursive version of a function

 Usually runs slower
 Uses more storage
 May use code that is easier

to write and understand

Recursion versus Iteration

Pointers

 a memory address of a computer which may
contain other variable or even another pointer

Pointers intro

3451

22
5000

5000

5000
34515000

22

 General form of pointer declaration is:

type *name;

E.g.
int *pnValue;
float *pfValue;
char *pcValue;

int *pnValue, *pnIndex;

Pointer variable

 You can initialize a pointer to null using 2 methods
as shown below -

variable_type *pointer_name = 0;

or

variable_type *pointer_name = NULL;

NULL is defined in many standard headers such as <stdio.h>.

Pointers initialization

 assign value of one pointer to another using
assignment operator '='

 right hand side points to memory address of
variable stored in left hand side pointer. As a result
both pointers point to same memory location

Pointer assignment

#include <stdio.h>

int main ()
{

char ch = a;
char* p1, *p2;

p1 = &ch;

p2 = p1; // Pointer Assignment Taking Place

printf (" *p1 = %c And *p2 = %c", *p1,*p2); // Prints 'a' twice

return 0;
}

Pointer assignment - example

#include <stdio.h>

int main ()
{

char ch = a;
char* p1, *p2;

p1 = &ch;

p2 = p1; // Pointer Assignment Taking Place

printf (" *p1 = %c And *p2 = %c", *p1,*p2); // Prints 'a' twice

return 0;
}

Pointer assignment - example

a
chp1

p2

(1231)

#include <stdio.h>

int main ()
{

char ch = a;
char* p1, *p2;

p1 = &ch;

p2 = p1; // Pointer Assignment Taking Place

printf (" *p1 = %c And *p2 = %c", *p1,*p2); // Prints 'a' twice

return 0;
}

Pointer assignment - example

a
chp1

p2

1231
(1231)

#include <stdio.h>

int main ()
{

char ch = a;
char* p1, *p2;

p1 = &ch;

p2 = p1; // Pointer Assignment Taking Place

printf (" *p1 = %c And *p2 = %c", *p1,*p2); // Prints 'a' twice

return 0;
}

Pointer assignment - example

a
chp1

p2

1231
(1231)

1231

 Pointer conversion involves changing the type the
pointer is pointing to

 Null pointer: a pointer which points to nothing.
 Infact it points to the base address of your CPU registers and

since register is not addressable will lead to crash or at
minimum a segmentation fault.

 Void pointer: technically is a pointer which is
pointing to the unknown.
 Void pointer has special property that it can be type

casted (i.e. change type) into any other pointer

Pointer conversion

Pointer conversion - example
#include <stdio.h>

int main ()
{

int i = 10;
char *p1
int *p2;

p2 = &i;

p1 = (char *) p2; // Type Casting and Pointer Conversion

printf (" *p1 = %c And *p2 = %d", *p1,*p2);

return 0;
}

 Not all arithmetic operations are defined in
pointers.
 You can increment them,
 You can decrement them,
 You can add and subtract integer values from

them.
 You even can subtract two pointers.

 But you cannot add two pointers, mulitply,
divide,modulus them. You can not also add or
subtract values other than integer.

Pointers arithmetic

 if X pointer is char type(assumed 1 Byte or 8Bit long) than X = X + 1 will
have value 1001 and X = X - 1 will have value 999.

 if X pointer is integer type (assumed 2 byte or 32 bit long) than X = X + 1
will have value 1002 and X = X - 1 will have value 998.

 if X pointer is float type (assumed 4 Byte or 32Bit long) than X = X + 1 will
have value 1004 and X = X - 1 will have value 9996.

 Reason: when you increment a pointer of certain base type it increase it
value in such a way that it points to next element of its base type. If you
decrement a pointer its value decrease in such a way that it points to
previous value of its base type. So increment as well as decrement in fixed
quanta of size of the base type.

Pointers arithmetic - examples

	CSC180: Lecture 16
	Pitfall: Stack Overflow
	Recursion Types�
	Recursion versus Iteration
	Slide Number 5
	Pointers intro
	Pointer variable
	Pointers initialization
	Pointer assignment
	Pointer assignment - example
	Pointer assignment - example
	Pointer assignment - example
	Pointer assignment - example
	Pointer conversion
	Pointer conversion - example
	Pointers arithmetic
	Pointers arithmetic - examples

