
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 17

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

 in C it is permitted for a pointer to point to another
pointer.
 As a result many layers of pointer can be

formed and this called multiple indirection

 A pointer to a pointer has declaration similar to that of
a normal pointer but have more asterix * sign before
them indicating the depth of the pointer.

Pointer multiple indirection

#include <stdio.h>

int main ()
{

int i = 10;
int **p1
int *p2;

p2 = &i;
p1 = &p2; // Multiple indirection

printf (" **p1 = %d And *p2 = %d", **p1,*p2); //Statement will show 10 twice.

return 0;
}

Pointer multiple indirection - example

i (3451)p2 (5000)
10

p1 (7000)

#include <stdio.h>

int main ()
{

int i = 10;
int **p1
int *p2;

p2 = &i;
p1 = &p2; // Multiple indirection

printf (" **p1 = %d And *p2 = %d", **p1,*p2); //Statement will show 10 twice.

return 0;
}

Pointer multiple indirection - example

3451
i (3451)p2 (5000)

10
p1 (7000)

#include <stdio.h>

int main ()
{

int i = 10;
int **p1
int *p2;

p2 = &i;
p1 = &p2; // Multiple indirection

printf (" **p1 = %d And *p2 = %d", **p1,*p2); //Statement will show 10 twice.

return 0;
}

Pointer multiple indirection - example

34515000
i (3451)p2 (5000)

10
p1 (7000)

 Two pointers can be compared no matter where
they point.

 Comparison can be done using <, >, =, <= and
>= operators.

 Though it is not forcibly implied but comparison of
two pointers become sensible only when they are
related such as when they are pointing to
element of same arrays.

Pointer comparison

#include <stdio.h>

int main ()
{

int data[100];
int *p1;
int *p2;
int i;

for (i = 0; i <100; i = i +1)
{

data[i] = i;
}

p1 = &data [1];
p2 = &data [2];

if (p1 > p2)
{

printf ("\n\n p1 is greater than p2");
}

else
{

printf ("\n\n p2 is greater than p1");
}

}

Pointer comparison - example

 Array and Pointers in c are very closely related.
Infact they are so similar to each other in nature
that they can be used interchangeably in each
other positions most of the time.

 Important link joining them is that array name without the
brackets is the pointer name and other end a pointer can
be indexed as if its an array.

Pointer and arrays

#include <stdio.h>

int main ()
{

int data[100];
int* p1;
int i;
for (i = 0; i <100;i = i + 1) {

data[i] = i;
}

p1 = data; //Assigning base address of an array to pointer

for (i = 0; i <100;i = i + 1) //Accessing Array using index
{

printf ("\n%d",p1[i]);
}

for (int i = 0; i <100;i++) //Access Array using Pointer Arithmetic
{

printf ("\n%d",*(p1 +i));
}

return 0;
}

Pointer and arrays - example

 Pointers like any other data type can be arrayed.
called array of pointers

 Array of pointers are declared as shown below:

data_type *variable_name [array_size];

E.g.
int *parrnValues[10];
char *parrcValues[100];

Pointer and arrays – cont’d

#include <stdio.h>

int main ()
{

int data[5];
int *array[5];
int i;

for (i = 0; i <5; i= i +1)
{

data[i] = i;
}

for (i = 0; i <5; i = i +1) //Assigning address of elements of array data to array of pointers.
{

array[i] = &data[i];
}

for (i = 0; i <5; i = i + 1) //Accessing Array value using index
{

printf ("\n%d",data[i]);
}

for (i = 0; i <5; i = i + 1) //Access Array value using array of pointers
{

printf ("\n%d",*array[i]);
}

Pointer and arrays – example 2

 Dynamic memory allocation (DMA)
 Sometimes Memory requirement cannot be

known at compile time but depends upon the
input user gives interaction or some other
dynamic values which keeps changing.

 In such cases memory requirement of the
program may expand or shrink at run time and
in this DMA comes handy.

Pointer & dynamic memory allocation

 Dynamic memory allocation (DMA) , how to ?
 Reserve the needed memory at run time when

you need it
 Return the memory back when you are done

Pointer & dynamic memory allocation

 void* malloc (int number_of_bytes)
 malloc stands for memory allocations and is

used to allocate number_of_bytes from
computer memory

 Returns a pointer to the beginning of the
allocated memory

Pointer & DMA functions: malloc

defined in the standard library header <stdlib.h>

 void free (void *p)
 used to return allocated memory from malloc

back to heap

Pointer & DMA functions: free

defined in the standard library header <stdlib.h>

 int sizeof (typename)
 used to return the number of bytes that the

underlying system reserves for a specific type
 E.g.

int nBytesInInt = sizeof(int);
int nBytesInfloat = sizeof(float);
int nBytesInInt = sizeof(int);

Pointer & DMA functions: sizeof

defined in the standard library header <stdlib.h>

Pointers && DMA functions example 1
#include <stdio.h>
#include <stdlib.h>

int main ()
{

int *p;

p = (int *) malloc (sizeof (int)); //Dynamic Memory Allocation

if (p == NULL) //Incase of memory allocation failure execute the error handling code block
{
printf ("\n Out of Memory");
exit (1);

}

*p = 100;

printf ("\n p = %d", *p); //Display 100 of course.

return 0;
}

Pointers && DMA functions example 1
#include <stdio.h>
#include <stdlib.h>

int main ()
{

int *p;

p = (int *) malloc (sizeof (int)); //Dynamic Memory Allocation

if (p == NULL) //Incase of memory allocation failure execute the error handling code block
{
printf ("\n Out of Memory");
exit (1);

}

*p = 100;

printf ("\n p = %d", *p); //Display 100 of course.

free (p);

return 0;
} Is there something missing here?

 Normal arrays can be increased in power and
flexibility using DMA to be converted into dynamic
allocated arrays.

 These dynamic allocated arrays though have a
little bit of complication involved with them in
usage, so read carefully the explanation given
below. Also their declaration varies entirely.

Pointer & DMA & Dynamic Arrays

Pointer & DMA & Dynamic Arrays: sizeof

 int sizeof (typename)
 used to return the number of bytes that the

underlying system reserves for a specific type
 E.g.

int nBytesInInt = sizeof(int);
int nBytesInfloat = sizeof(float);
int nBytesInInt = sizeof(int);

int nBytesInArrayof5Ints = sizeof(int) * 5;

Pointers && DMA && Arrays - example 1
#include <stdio.h>
#include <stdlib.h>

#define SIZE 10 //Size of 1D Array

int main ()
{
int *p;
int i;

p = (int *) malloc (SIZE * sizeof (int)); //Dynamic Memory Allocation of 1D Array

if (p == NULL) //Incase of memory allocation failure execute the error handling code block
{

printf ("\nOut of Memmory");
exit (1);

}

for (i = 0; i<SIZE; i = i + 1)
{

p [i] = i; // Loading the Array
}

for (i = 0; i<SIZE; i = i + 1)
{

printf ("\n%d", *(p + i)); // Displaying the Array
}

free(p);
return 0;

}

	CSC180: Lecture 17
	Pointer multiple indirection
	Pointer multiple indirection - example
	Pointer multiple indirection - example
	Pointer multiple indirection - example
	Pointer comparison
	Pointer comparison - example
	Pointer and arrays
	Pointer and arrays - example
	Pointer and arrays – cont’d
	Pointer and arrays – example 2
	Pointer & dynamic memory allocation
	Pointer & dynamic memory allocation
	Pointer & DMA functions: malloc
	Pointer & DMA functions: free
	Pointer & DMA functions: sizeof
	Pointers && DMA functions example 1
	Pointers && DMA functions example 1
	Pointer & DMA & Dynamic Arrays
	Pointer & DMA & Dynamic Arrays: sizeof
	Pointers && DMA && Arrays - example 1

