
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 21

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

C Strings

C Strings

 Character array - an array whose components
are of type char

 String - a sequence of zero or more characters
enclosed in double quote marks “”

 C stings are null terminated (‘\0’)

 The last character in a string is the null
character

C-String Variable

 Array of characters:
char s[10];
 Declares a c-string variable to hold up to

9 characters
 + one null character

 Typically "partially-filled" array
 Declare large enough to hold max-size string
 Indicate end with null

 Only difference from standard array:
 Must contain null character

C-String Storage

 A standard array:
char s[10];

 If s contains string "Hi Mom!", stored as:

C-strings: declaring and initializing
 Using arrays:

 char message[] = {'H', 'i', '!', '\0'};
 char message[] = {"Hi!"};

 Using pointers
 const char *message = "Hi!";
 char *message = new char[10];

C Strings (continued)

 There is a difference between 'A' and "A"

 'A' is the character A

 "A" is the string A

 Because strings are null terminated, "A"
represents two characters, 'A' and '\0‘

 Similarly, "Hello" contains six characters, 'H',
'e', 'l', 'l', 'o', and '\0'

C Strings (continued)

 Consider the statement
char name[16] = “hello”;

 Because C strings are null terminated and name
has sixteen components
 the largest string that can be stored in name is
15

 If you store a string of length, say 10 in name
 the first 11 components of name are used and

the last 5 are left unused

C Strings (Character Arrays)

 The statement
char name[16] = "John";

declares a string variable name of length 16 and
stores "John" in it

 The statement
char name[] = "John";

declares a string variable name of length 5 and
stores "John" in it

String Comparison

 C-strings are compared character by character using
the collating sequence of the system

 If we are using the ASCII character set
1. The string "Air" is smaller than the string

"Boat"

2. The string "Air" is smaller than the string "An"
3. The string "Bill" is smaller than the string

"Billy"

4. The string "Hello" is smaller than "hello"

String Comparison: uses ASCII values
"Hello" is smaller than "hello“
"Air" is smaller than the string "Boat"

C-String Indexes

 Recall: a c-string IS an array

 Can access indexed variables of:
char ourString[5] = "Hi";
 ourString[0] is "H"
 ourString[1] is "i"
 ourString[2] is "\0"
 ourString[3] is unknown
 ourString[4] is unknown

C-String Initialization

 Can initialize c-string:
char myMessage[20] = "Hi there.";
 Needn’t fill entire array
 Initialization places "\0" at end

 Can omit array-size:
char shortString[] = "abc";
 Automatically makes size one more than

length of quoted string
 NOT same as:

char shortString[] = {"a", "b", "c"};

C-String Index Manipulation

 Can manipulate indexed variables

char happyString[7] = "DoBeDo";
happyString[6] = "Z";

 Be careful!
 Here, "\0" (null) was overwritten by a "Z"!

 If null overwritten, c-string no longer "acts" like c-
string!
 Unpredictable results!

Library

 Declaring c-strings
 Requires no C library
 Built into standard C

 Manipulations
 Require library: #include <string.h>
 Typically included when using c-strings

 Normally want to do "fun" things with them…

 <string.h> is full of string manipulation functions

= and C-strings

 C-strings not like other variables
 Cannot assign or compare:

char aString[10];
aString = "Hello"; // ILLEGAL!
 Can ONLY use "=" at declaration of c-string!

 Must use library function for assignment:
strcpy(aString, "Hello");
 Built-in function (in string library)
 Sets value of aString equal to "Hello"
 NO checks for size!

 Up to programmer, just like other arrays!

Comparing C-strings

 cannot use operator ==
char aString[10] = "Hello";
char anotherString[10] = "Goodbye";

if(aString == anotherString) // NOT allowed!

 Must use library function:
if (strcmp(aString, anotherString))

C-string Functions: strlen()

 "String length"

 Often useful to know string length:
char myString[10] = "dobedo";
printf (“ %d”, strlen(myString));
 Returns number of characters

 Not including null
 Result here:

6

C-string Functions: strcat()

 strcat()

 "String concatenate":
char stringVar[20] = "The rain";
strcat(stringVar, "in Spain");
 Note result:

stringVar now contains "The rainin Spain"
 Be careful!
 Incorporate spaces as needed!

	CSC180: Lecture 21
	Slide Number 2
	C Strings
	C-String Variable
	C-String Storage
	C-strings: declaring and initializing
	C Strings (continued)
	C Strings (continued)
	C Strings (Character Arrays)
	String Comparison
	String Comparison: uses ASCII values
	C-String Indexes
	C-String Initialization
	C-String Index Manipulation
	Library
	Slide Number 16
	Slide Number 17
	= and C-strings
	Comparing C-strings
	C-string Functions: strlen()
	C-string Functions: strcat()

