
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 24

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

C-String functions: sscanf and sprintf
 Syntax :

sscanf (instring, “format”, variable_address);
 Similar to scanf, it inputs data from string

instead of keyboard
 Format: similar to those used in printf, see

Chapter 4
 If use %s format, it reads all until it reaches

the first white space

 Syntax:
sprintf (outstring, “format”, variable);

 Similar to printf, it outputs results to string
instead of screen

C-String functions: sscanf and sprintf

char c;
int i;
double db;
char s[80], outstring[80],

*instring=“a 100 -1.23 This is a sample data”;

sscanf(instring,“%c%d%lf%s”, &c, &i, &db, s);
//Then c=‘a’, i=100, db=-1.23, s=“This”

sprintf(outstring,“%c%d%lf%s”, c, i, db, s);
// print to outstring: a 100 -1.23 This

C-String functions: strtok
 Syntax :

strtok(instring, delimiter)

 Used to retrieve the tokens of a sentence…

 keeps an internal pointer to the string

C-String functions: strtok

char *tokenPtr;
char sentence[] = "This is a sentence with 7 tokens";

tokenPtr = strtok(sentence, " ");
while (tokenPtr != NULL)
{

printf(" current token = %s \r\n" , tokenPtr);
tokenPtr = strtok(NULL, " ");

}

C-String functions: strtok

char *tokenPtr;
char sentence[] = "This is a sentence with 7 tokens";

tokenPtr = strtok(sentence, " ");
while (tokenPtr != NULL)
{

printf(" current token = %s \r\n" , tokenPtr);
tokenPtr = strtok(NULL, " ");

}

C-String functions: strtok

char *tokenPtr;
char sentence[] = "This is a sentence with 7 tokens";

tokenPtr = strtok(sentence, " ");
while (tokenPtr != NULL)
{

printf(" current token = %s \r\n" , tokenPtr);
tokenPtr = strtok(NULL, " ");

}

C-String functions: strtok

char *tokenPtr;
char sentence[] = "This is a sentence with 7 tokens";

tokenPtr = strtok(sentence, " ");
while (tokenPtr != NULL)
{

printf(" current token = %s \r\n" , tokenPtr);
tokenPtr = strtok(NULL, " ");

}

C-String functions: strtok

char *tokenPtr;
char sentence[] = "This is a sentence with 7 tokens";

tokenPtr = strtok(sentence, " ");
while (tokenPtr != NULL)
{

printf(" current token = %s \r\n" , tokenPtr);
tokenPtr = strtok(NULL, " ");

}

C-String functions: strtok

char *tokenPtr;
char sentence[] = "This is a sentence with 7 tokens";

tokenPtr = strtok(sentence, " ");
while (tokenPtr != NULL)
{

printf(" current token = %s \r\n" , tokenPtr);
tokenPtr = strtok(NULL, " ");

}

C-String functions: strtok

char *tokenPtr;
char sentence[] = "This is a sentence with 7 tokens";

tokenPtr = strtok(sentence, " ");
while (tokenPtr != NULL)
{

printf(" current token = %s \r\n" , tokenPtr);
tokenPtr = strtok(NULL, " ");

}

C-String functions: strtok

char *tokenPtr;
char sentence[] = "This is a sentence with 7 tokens";

tokenPtr = strtok(sentence, " ");
while (tokenPtr != NULL)
{

printf(" current token = %s \r\n" , tokenPtr);
tokenPtr = strtok(NULL, " ");

}

Preprocessor

The preprocessor
 The preprocessor takes your source code and – following

certain directives that you give it – tweaks it in various
ways before compilation.

 A directive is given as a line of source code starting with
the # symbol

 The preprocessor works in a very crude, “word-processor”
way, simply cutting and pasting –
it doesn’t really know anything about C!

Your
source
code

Preprocessor

Enhanced and
obfuscated
source code

Compiler

Object
code

Preprocessor Directives: rules

 The Must begin with a #

 May contain extra spaces and tabs

 End at the first new-line character, unless
continued using \

Preprocessor directives: #define value

 The #define directives perform
“global replacements”:

#define MAX_COLS 20

#define MAX_INPUT 1000

 In your code, every instance of MAX_COLS is
replaced with 20, and every instance of
MAX_INPUT is replaced with 1000.

Preprocessor directives: #define value
#define N 100
#define PI 3.14159
#define WARNING_MSG "Warning: nonstandard feature"
#define BEGIN {
#define END }
#define BOOL int

if (nIndex < N)
BEGIN

printf(“%s”, WARNING_MSG);
END

if (nIndex < 100)
{
printf(“%s”, "Warning: nonstandard

feature");
}

This is what you see This is what the compiler see/compile

#define CUBE(x) ((x)*(x)*(x))

if (i==3)
x=CUBE(y+2);

else
x=y+2;

The above code is expanded to:
If (i==3)

x=((y+2)*(y+2)*(y+2));
else

x=y+2;

This is your code/
what you see

This is what the
compiler see/compile

Preprocessor directives: #define macro

Preprocessor directives: #define pitfalls
 Bad

#define mymult(a, b) a * b
…
k = mymult((i-1), (j+5);

k = i – 1 * j + 5;

 Better
#define mymult(a, b) (a) * (b)
…..
k = mymult(i-1, j+5);

k = (i – 1) * (j + 5);

This is your code/
what you see

This is what the
compiler see/compile

This is your code/
what you see

This is what the
compiler see/compile

Preprocessor directives: #define pitfalls
 Be careful of other side effects, for example what if we did

the following ?
#define mysq(a) a * a
….
k = mysq(i++)

k = i++ * i++

This is your code/
what you see

This is what the
compiler see/compile

Preprocessor directives: #include

example.c

#include <stdio.h>
#include <stdlib.h>
/* other includes */

int main()
{

printf(“Hello world”);
return 0;

}

/* comments */
#ifndef _STDIO_H
#define _STDIO_H

... definitions and protoypes

#endif

/usr/include/stdio.h

/* comments */
#ifndef _STDLIB_H
#define _STDLIB_H

... definitions and
protoypes

#endif

/usr/include/stdlib.h

#include directs the preprocessor
to “include” the contents of the file
at this point in the source file.

#ifndef, #define and #endif
 “#define” defines a symbol.
 #define ABC defines the string “ABC”.

 Now, the string “ABC” is recognized by the pre-
processor.

 “#ifndef ABC” means “if the string ABC is not defined”
 “#endif” closes the “#ifndef” block.

#ifndef USEFUL_H
#define USEFUL_H

float square(float x);
int factorial(int x);

#endif

useful.h

A ifndef/endif block

If the string “USEFUL_H” is not defined

Define the string “USEFUL_H”

#ifndef in header files (*.h)

 The #ifndef, #define and #endif lines are used in header
files to prevent them from being included multiple times.

 E.g.
 A.h includes B.h, and C.h also includes B.h.
 Then, D.c includes both A.h and C.h.

 In this case, B.h is included twice in D.c.

A.h
#include “B.h” #include “A.h”

#include “C.h”
C.h

B.h
D.c

#include “B.h”

#ifndef in header files (*.h)

 Without the #ifndef lines, the compiler would complain
that functions are declared multiple times.

 With the #ifndef lines, the preprocessor would completely
ignore B.h the second time it is included.

A.h
#ifndef A
#define A
#include “B.h”

#endif

#include “A.h”

#include “C.h”

C.h

B.h D.c

#ifndef C
#define C”
#include “B.h”

#endif

#ifndef B
#define B

#endif

	CSC180: Lecture 24
	C-String functions: sscanf and sprintf
	C-String functions: sscanf and sprintf
	C-String functions: strtok
	C-String functions: strtok
	C-String functions: strtok
	C-String functions: strtok
	C-String functions: strtok
	C-String functions: strtok
	C-String functions: strtok
	C-String functions: strtok
	C-String functions: strtok
	Slide Number 13
	The preprocessor
	Preprocessor Directives: rules
	Preprocessor directives: #define value
	Preprocessor directives: #define value
	Preprocessor directives: #define macro
	Preprocessor directives: #define pitfalls
	Preprocessor directives: #define pitfalls
	Preprocessor directives: #include
	#ifndef, #define and #endif
	#ifndef in header files (*.h)
	#ifndef in header files (*.h)

