
Wael Aboulsaadat

wael@cs.toronto.edu
http://portal.utoronto.ca/

CSC180: Lecture 25

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

Preprocessor directives: #define value
#define N 100
#define PI 3.14159
#define WARNING_MSG "Warning: nonstandard feature"
#define BEGIN {
#define END }
#define BOOL int

if (nIndex < N)
BEGIN

printf(“%s”, WARNING_MSG);
END

if (nIndex < 100)
{
printf(“%s”, "Warning: nonstandard

feature");
}

This is what you see This is what the compiler see/compile

Macros: undef

Attempting to redefine a macro without un-defining it first is
illegal.

Attempting to un-define an undefined macro is legal.

How to undefine a macro?
#undef macro-name

General Properties of Macros
• One macro may be defined in terms of another:

#define PI 3.14159
#define TWO_PI (2*PI)

When the preprocessor encounters the symbol TWO_PI
later in the program, it replaces it by (2*PI). The
preprocessor then rescans the replacement list to
see if it contains invocations of other macros (PI in this
case). The preprocessor will rescan the replacement list as
many times as necessary to eliminate all macro names.

General Properties of Macros
• The preprocessor replaces only entire symbols, not
portions of symbols. It ignores macro names embedded in
identifiers, character constants, and string literals.

#define SIZE 256
char error_msg[] = "Error: SIZE exceeded"; /* not replaced */
...
if (BUFFER_SIZE > SIZE) /* only SIZE is replaced */
printf("%s\n", error_msg);

• A macro definition normally remains in effect from the
point at which it appears to the end of the file.

Conditional Macro: #if
 #if directive tests an expression to determine whether or

not a particular section of text should be included in a
program.

 Syntax:
 #if constant-expression

statements (could be C statements and/or other # statements)
#endif

Or if you have more than one condition:

#if
statements

#elif
statements

#else
statements

#endif

 Rules for #if, #elif, #else, #endif
 Behave exactly like their C counterparts.
 The test condition:

 Must evaluate to a constant integer.
 Will be evaluated as logical T/F condition
 May contain operators but only in combination

w/integer constants.

 Using #if you can selectively incorporates/omits
program statements during compilation.

Conditional Macro: #if

 defined() is a function supplied by the
preprocessor to check the existence of a macro:
 #if defined(some-macro-name)

 Short-hand: #ifdef some-macro-name

 #if !defined(some-macro-name)
 Short-hane: #ifndef some-macro-name

Conditional Macro: #if and defined()

Conditional Macro: #if and defined()

#if !defined(CUBE)
#define CUBE(x) ((x)*(x)*(x))

#endif

Or

#ifndef CUBE
#define CUBE(x) ((x)*(x)*(x))

#endif

Uses of Conditional Compilation
 Providing a default definition for a symbol:

#ifndef ARRAY_SIZE
#define ARRAY_SIZE 256
#endif

#ifndef NULL
#define NULL 0
#endif

#ifndef ERROR_MSG
#define ERROR_MSG “You have specified an invalid input”
#endif

Uses of Conditional Compilation
 Including debugging code:

#ifdef DEBUG
printf("Value of i: %d\n", i);
printf("Value of j: %d\n", j);
#endif

#include <stdio.h>

int main() {
float friction, number;
unsigned int zip_code;

#ifndef DEBUG
zip_code = 13285;

#else
zip_code = 00001;

#endif

friction = .04;
number = (zip_code * friction) – 3.2;

#ifdef DEBUG
printf(“friction: %f number %f\n”,friction,number);

#endif

printf(“The final number was %f\n”, number);
return 0;

}

Conditional compilation for debugging

#include <stdio.h>

int main() {
float friction, number;
unsigned int zip_code;

#ifndef DEBUG
zip_code = 13285;

#else
zip_code = 00001;

#endif

friction = .04;
number = (zip_code * friction) – 3.2;

#ifdef DEBUG
printf(“friction: %f number %f\n”,friction,number);

#endif

printf(“The final number was %f\n”, number);
return 0;

}

> gcc preprocDebug.c -o pdg
> pdg
The final number was 528.199951
> gcc -DDEBUG preprocDebug.c -o pdg
> pdg
friction: 0.040000 number -3.160000
The final number was -3.160000
>

Conditional compilation
for debugging

Uses of Conditional Compilation
Writing code to run on different machines or under
different operating systems:

#if defined(WIN32)
…
#elif defined(MAC_OS)
…
#elif defined(LINUX)
…
#endif

Uses of Conditional Compilation
Writing code to work with different flavors of the same
library

#if defined(STRING_LIB_VER95)
strncpy(string,string2,limit);

#elif defined(STRING_LIB_VER98)
strcpy(string1, string2, limit);

#endif

Uses of Conditional Compilation
 Temporarily disabling code that contains comments:

#if 0
…..

if(X < 10)
bkg_color = BLACK; /*set background color */

Y = 20;

….
#endif

Uses of Conditional Compilation
 Protecting header files from being included more than
once.

#ifndef in header files (*.h)

 Without the #ifndef lines, the compiler would complain
that functions are declared multiple times.

 With the #ifndef lines, the preprocessor would completely
ignore B.h the second time it is included.

A.h
#ifndef A
#define A
#include
“B.h”

#endif

#include “A.h”

#include “C.h”

C.h

B.h D.c

#ifndef C
#define C”
#include “B.h”

#endif

#ifndef B
#define B

#endif

Predefined Symbolic Constants

#include <stdio.h>
int main(){

printf("%d\n%s\n%s\n%s\n", __LINE__,
__FILE__, __DATE__, __TIME__);

}
 Output:

3
example.c
Oct 13 2003
19:27:57

 line #, file name, compiled date, compiled time

	CSC180: Lecture 25
	Preprocessor directives: #define value
	Macros: undef
	General Properties of Macros
	General Properties of Macros
	Conditional Macro: #if
	Conditional Macro: #if
	Conditional Macro: #if and defined()
	Conditional Macro: #if and defined()
	Uses of Conditional Compilation
	Uses of Conditional Compilation
	Conditional compilation for debugging
	Conditional compilation �for debugging
	Uses of Conditional Compilation
	Uses of Conditional Compilation
	Uses of Conditional Compilation
	Uses of Conditional Compilation
	#ifndef in header files (*.h)
	Predefined Symbolic Constants

