CSC180: Lecture 25

Wael Aboulsaadat

wael@cs.toronto.edu

http://portal.utoronto.ca/

Acknowledgement: These slides are partially based on the slides supplied
with Prof. Savitch book: Problem Solving with C

\

Preprocessor directives: #define value
#define N 100
#define P1 3.14159
#define WARNING_MSG "Warning: nonstandard feature"
#define BEGIN {
#define END }
#define BOOL int

if (nindex <N) if (nIindex <100)
BEGIN {
printf(“%s”, WARNING MSG); printf(“%s”, "Warning: nonstandard
END - feature");
}
J | J
| |

This is what you see This is what the compiler see/compile

Macros: undef

Attempting to redefine a macro without un-defining it first is
llegal.

Attempting to un-define an undefined macro is legal.

How to undefine a macro?
#undef macro-name

General Properties of Macros
 One macro may be defined in terms of another:

#define P1 3.14159
#define TWO_PI (2*P)

When the preprocessor encounters the symbol TWO_PI
later in the program, it replaces it by (2*Pl). The
preprocessor then rescans the replacement list to

see If it contains invocations of other macros (Pl in this
case). The preprocessor will rescan the replacement list as
many times as necessary to eliminate all macro names.

General Properties of Macros

* The preprocessor replaces only entire symbols, not
portions of symbols. It ignores macro names embedded In
identifiers, character constants, and string literals.

#define SIZE 256
char error_msg[] = "Error: SIZE exceeded"; /* not replaced */

If (BUFFER_SIZE > SIZE) /* only SIZE is replaced */
printf("%s\n", error_msg);

* A macro definition normally remains in effect from the
point at which it appears to the end of the file.

Conditional Macro: #if

= #if directive tests an expression to determine whether or

not a particular section of text should be included in a
program.

x Syntax:
= #if constant-expression

statements (could be C statements and/or other # statements)
#endif

Or if you have more than one condition:

#if
statements
#elif
statements
#else
statements
#endif

Conditional Macro: #if

= Rules for #if, #elif, #else, #endif
= Behave exactly like their C counterparts.

= The test condition:
= Must evaluate to a constant integer.
= Will be evaluated as logical T/F condition

= May contain operators but only in combination
w/integer constants.

= Using #if you can selectively incorporates/omits
program statements during compilation.

Conditional Macro: #if and defined()

= defined() Is a function supplied by the
preprocessor to check the existence of a macro:

= #if defined(some-macro-name)
« Short-hand: #ifdef some-macro-name

» #if !defined(some-macro-name)
« Short-hane: #ifndef some-macro-name

Conditional Macro: #if and defined()

#if !defined(CUBE)
#define CUBE(X) ((X)*(X)*(x))
#endif

Or

#ifndef CUBE
#define CUBE(X) ((X)*(X)*(x))
#endif

Uses of Conditional Compilation

=>» Providing a default definition for a symbol:

#ifndef ARRAY_SIZE
#define ARRAY_SIZE 256
#endif

#ifndef NULL
#define NULL O
#endif

#ifndef ERROR_MSG
#define ERROR_MSG “You have specified an invalid input”

#endif

Uses of Conditional Compilation
=> Including debugging code:

#ifdef DEBUG
printf("Value of i; %d\n", I);
printf("Value of j: %d\n",));
#endif

Conditional compilation for debugging

#include <stdio.h>

int main() {
float friction, number;
unsigned int zip_code;

#i1fndef DEBUG

zip_code 13285;

#else

zip_code = 00001;

#endi

friction = .04;
number = (zip_code * friction) — 3.2;

#ifdef DEBUG
printf(“friction: %f number %F\n”,friction,number);
#endif

printf(“The final number was %f\n”’, number);
return O;

Conditional compilation

> gcc preprocDebug.c -0 pdg

for debugging > pdg

The final number was 528.199951

#include <stdio.h> > gcc -DDEBUG preprocDebug.c -0 pdg
int main() { > Pdg
Iint main PTRIE
float friction, number: frlctlo.n. 0.040000 number -3.160000
unsigned int Zip_code; The f|na| numbel’ was '3160000
_ >
#i1fndef DEBUG
zip_code = 13285;
#else
zip_code = 00001;
#endi f

friction = .04;
number = (zip_code * friction) — 3.2;

#ifdef DEBUG
printf(“friction: %f number %F\n”,friction,number);

#endi

printf(“The final number was %f\n”’, number);
return O;

Uses of Conditional Compilation

=>» Writing code to run on different machines or under
different operating systems:

#if defined(WIN32)
#elif defined(MAC_OS)
#elif defined(LINUX)

#endif

Uses of Conditional Compilation

=>Writing code to work with different flavors of the same
library

#if defined(STRING_LIB_VER95)
strncpy(string,string2,limit);
#elif defined(STRING_LIB_VER98)
strcpy(stringl, string2, limit);

#endif

Uses of Conditional Compilation

=» Temporarily disabling code that contains comments:

if(X < 10)
bkg_color = BLACK; /*set background color */

Y = 20;

#endif

Uses of Conditional Compilation

=» Protecting header files from being included more than
once.

#ifndef In header files (*.h)

= Without the #ifndef lines, the compiler would complain
that functions are declared multiple times.

= With the #ifndef lines, the preprocessor would completely
ignore B.h the second time it is included.

A.h
B.h #ifndef A

sifndef B #define A #include “A.h”

. #include
#define B “B h"
;,ff”’ . #include “C.h”

#endif

C.h

#endif #ifndef C
#define C”
#include “B.h”"

D.c

#endif

Predefined Symbolic Constants

#include <stdio.h>
int main(){

printf("'%d\n%s\n%s\n%s\n'"", LINE ,
__FILE _, DATE__ , TIME_);

}

3

example.c
Oct 13 2003
19:27:57

= line #, file name, compiled date, compiled time

	CSC180: Lecture 25
	Preprocessor directives: #define value
	Macros: undef
	General Properties of Macros
	General Properties of Macros
	Conditional Macro: #if
	Conditional Macro: #if
	Conditional Macro: #if and defined()
	Conditional Macro: #if and defined()
	Uses of Conditional Compilation
	Uses of Conditional Compilation
	Conditional compilation for debugging
	Conditional compilation �for debugging
	Uses of Conditional Compilation
	Uses of Conditional Compilation
	Uses of Conditional Compilation
	Uses of Conditional Compilation
	#ifndef in header files (*.h)
	Predefined Symbolic Constants

