CSC207H: Assignment 1

This assignment is about a two-person dice game called Flip explained on
Cheapass Games. You will write two independent Java classes that each
implement the interface camestate that we have provided for you. Once your code
is complete, you can play your game using the text-based user interface in
FlipRunner.java, along with one of your two camestate implementations.

Your two camestate implementations are called BagGamestate and setGamestate. We
have started each of them for you and added them to the a1 directory of your
repository. The interface and runner classes mentioned above are also in this
directory. You must not change either camestate.java OF FlipRunner.java. We will
use our original versions to compile and test your completed code.

To understand the rest of this handout, you will first have to go look up the
game rules and play until you understand them.

The state of a game is all the information that would be needed to continue the
game from that point forward. It doesn't usually have to include all the details of
past turns, just the current situation.

We need to know the state of the game when a player's turn begins, and in Flip
that point in time needs to be thought through carefully. Remember that there
are three actions players may perform: flip, play and take. If player A chooses to
flip a die, then obviously player B's turn begins as soon as A has finished
flipping. However, if A chooses to "instruct" B to play one of B's dice into the
middle, then even though the official game description sounds as if B's turn
begins with the play, B actually has no choice about it, and it makes sense to
consider the play as part of A's move. The take that may follow the play,
however, is B's choice, so B's move begins with the take. (And if B has no dice
left, and cannot take any, then A wins the game.)

And what is the game state in Flip? Obviously it must include the dice belonging
to each player and the dice in the middle. However, because of the stalemate
rule, the state also has to include the information about which of those dice have
been flipped since the player last did a play. In our discussions, we will call the
dice that the player is not currently allowed to flip unflippable. The dice that can
legally be flipped are called flippable.

http://www.cheapass.com/free/games/flip.html

Now consider what happens after player A chooses to play. When B's turn begins,
a take is possible, but only up to the point where the sum of the taken dice is
less than the die just played. Therefore, B needs to know — by examining the
game state — which die was just played, so the state must include that
information.

The game state also must show which player plays next. For simplicity, we
choose to designate the player about to move or in the process of moving as
player 1 (the other being player 2). At the end of the move, the camestate Object's
switchPlayers method swaps the identity of the players. This simplifies the logic
for most of the methods and also simplifies the description of the state.

The camestate class also includes checking methods to be called before a move.
For example, the checkr1ip method checks if player 1 is allowed to make the
specified flip.

Because we have already written unit tests that examine the current camestate by
using its string representation, your implementation must provide a tostring that
builds the representation in this order.

the flippable dice of player 1 (if any) in increasing order

a plus sign (+)

the unflippable dice of player 1 (if any) in increasing order

a bar())

the dice in the centre (not including the one that was just played) in increasing order
a plus sign (+)

the die that was just played into the centre on the last turn (if any)
a bar (|)

the flippable dice of player 2 (if any) in increasing order

a plus sign (+)

the unflippable dice of player 2 (if any) in increasing order

For example, suppose the string representation of the state is

45+6|144+4 1446+

Then player 1 (who is about to make a move) has flippable dice 4 and 5, and an
unflippable 6. Player 2 has two flippable 4s and a flippable 6, and no unflippable
dice. In the middle, we see that a 4 has just been played, and that explains why
player 2 has no unflippable dice. In the middle are also a 1 and two 4s, so if
player 1 chooses, he or she may take the 1 from the middle before doing a play
or flip.

Both setGamestate and BagGamestate implement the same public interface but they
use a very different internal data structure. setcamestate Will model the dice for
each player using a Java set of pie objects. The pie class is provided in your

repository and you must not change it.

The Bagcamestate does not model each die with its own object. Instead it models
a collection of dice by storing only the number of dice with each face value. The
class gets its name Bagcamestate because we sometimes talk about having a bag
of objects that are all effectively the same. All you need to know to model the
bag is how many objects are in the bag. Since each player has flippable and
unflippable dice, each player will have two bags. To model a bag, we have
provided the class pice in your repository. We might have called the class
BagofDice but that name just seemed too cumbersome.

You will also find three test files in your repository. camestaterest is the abstract
parent class that contains the JUnit test cases that you will use for both your
implementations. BagGamestateTest and setGamestateTest are the concrete child
classes that instantiate the fixtures to be tested and inherit the shared test
cases.

GameStateTest contains 24 JUnit tests that only partially test a setGamestate
implementation. At the very least you should use the two child classes to test
your code, but that alone is not enough to be sure that your implementations are
correct. In particular, some of the interesting test cases for the program have
been intentionally left out. We have 10-15 more test cases that we will add to
the file when we use it to test your submission. HINT: As you learn the Flip
rules, write new test cases for your local copy of Testcamestate and use them to
test your code as your develop it.

The rules posted at Cheapass Games are the definitive Flip rules for this
assignment. If you are confused about a rule, you might be able to find a test-
case that addresses your confusion. If after reading the rules through carefully
(at least three times), you still think there is an ambiguity, you should post a
message to the course bulletin board or visit your instructors' office hours. In
your message, you should outline the two or more interpretations of the abiguity.
For example you could say, "When the game is in such and such a state, and
player 1 does X, the possible outcomes could be either y or z and both seem
legal according to the game instructions and the starter code."

Submit your assignment by committing your completed setcamestate.java and
BagGameState.java tO your repository. Each of these classes, and all the others we
have provided, should be inside a package riip. This package must be inside the
a1 directory of your repository. You will find advice on working with packages in
the Hints and tips page.

http://www.cheapass.com/free/games/flip.html
file:///E:/backup-20-oct-2012/Z/Teaching/0archive/207-all/csc207_f08_utm/assignments/tips.html

It is fine to have extra files in a1, and we don't mind if you accidentally change
the other Java files in your repository. Just make sure your solution works with
the original starter code (including the JUnit test files) because that is what we
will be using in our testing.

Before you consider yourself finished this assignment, you should check that you
have submitted everything correctly and that it all works on (cs1inux. To do this,
you want to check out a fresh copy of your repository. (Of course you already
have a copy of your repository checked out somewhere, but even if that
somewhere is also on your school account, you want to check out a fresh copy.)
Log in on the school machine, either by going to the lab itself, or by connecting
with an ssh program such as PuTTy. Use the Unix command-line tools inside a
terminal window to make a completely new directory using mkdair. Change to the
new directory (with cd), and do a checkout of your repository:

svn co https://cslinux.utm.utoronto.ca/svn/csc207h/YOUR UTORid

Navigate to the subdirectory containing the riip package source code and confirm
that your files are inside. Next compile your code, move to the parent directory,
and run your code from the command-line. To include the JUnit files in your
compilation you will need to specify the classpath option to java as follows.

javac -cp ".:/usr/share/java/junit.jar" flip/*.java

You can also run the JUnit tests from the command-line with the following
commands.

java -cp ".:/usr/share/java/junit.jar" junit.textui.TestRunner BagGameStateTest
java -cp ".:/usr/share/java/junit.jar" junit.textui.TestRunner SetGameStateTest

As well as marking your code for correctness, we will be looking at style and
design. The expectations for good Java style include following the standard
naming conventions and using a consistent style for braces, indentation and
other whitespace. We are not requiring full Javadoc comments, and we have
provided external method comments in the interface, but we will be marking your
internal comments. Most of the design decisions are made for you already, but
you still have the freedom to use private helper methods as appropriate.

Last change: $Date: 2008-09-25 14:32:52 -0400 (Thu, 25 Sep 2008) $

