
10/ 31/ 12 CSC207H: Assignm ent 2

1/ 4f ile: / / / E: / backup- 20- oct - 2012/ Z/ Teaching/ 0ar chive/ 207- all/ csc207_f 08_ut m / assignm ent s/ a2. ht m l

CSC207H: Assignment 2

Verifying HTML correctness, finding URLs

You will write a complete Java program to verify one aspect of HTML correctness,
beginning with a webpage at a specified URL and proceeding to check other URLs
that the first webpage links to.

The part of HTML correctness your program will check is that the tags match. A
tag in an HTML document is a code that specifies non-textual information such as
font, layout, or link URLs. Here is an example:
emphasized words

In the example, the words "emphasized words" are displayed in emphasized form
— usually with an italic font — because tag means "start emphasizing here".
Tag means "stop emphasizing here": the slash, '/', generally means "stop",
and tags usually appear in matching start-stop pairs.

HTML tends to be produced either by humans or by faulty computer programs, so
it is often imperfect. This can cause security problems or heated arguments.
What your program will check is that the tags in a specified web page are
properly matched — except for tags that don't require a match, and tags that
match themselves. Those details are specified later.

Tags can contain other information, such as font, colour and size. These are
called attributes of the tag. For example,

causes the output to begin being coloured red. More interestingly,
link text

causes the words "link text" to be a link to the URL
http://www.codinghorror.com/blog/archives/001172.html. The 'a' of this tag is
short for "anchor". To make life more interesting for you, there may be any
number of spaces before the "href" (but at least one), and there may or may not
be spaces before or after the '='. In real HTML, other attributes may be used in
the tag, either before or after "href" but we won't be considering this. If you wish
to have your code handle other attributes that might appear in anchor tags you
may, but our test cases will not include other attributes inside anchor tags. Last,
'a' tags may not even have an "href" attribute.

Those hrefs are interesting to you because, after it has finished checking the
current URL for tag matching, your program must follow all the links from this
URL to check those URLs for tag matching too.

Checking the tags

Program structure

http://www.codinghorror.com/blog/archives/001172.html

10/ 31/ 12 CSC207H: Assignm ent 2

2/ 4f ile: / / / E: / backup- 20- oct - 2012/ Z/ Teaching/ 0ar chive/ 207- all/ csc207_f 08_ut m / assignm ent s/ a2. ht m l

You must write and use these classes, which must all be in the package a2:

Tag, with these methods:
Tag(String s), the only constructor, which takes one argument: the tag string from
opening '<' to closing '>'.
toString(), which returns the same string as the original tag string, with the original
capitalization. You should trim any whitespace from the tag name.
getName(), which returns the name part of the tag, converted to lower case. For
example, if the tag is < x y="SomeThing">, then the name returned is "x". Again, you
should trim the returned string of leading and trailing whitespace.
getAttributes(), which returns the parts of the tag other than the name, converted to
lower case. (These are, not strictly speaking, the attributes.) In our example, the string
returned would be "y="something"".
isClosingTag(), which returns true or false depending on whether the name begins
with '/'.
isSelfMatching(), which returns true or false depending on whether the name ends
with '/' or the attributes are exactly "/".

There may be other methods, if you like, but we will test only those listed.
TagIterator, which is somewhat like java.util.Iterator, but with a few differences:

There is no generic type parameter, and next() always returns a Tag.
There is no remove() method.
There is one constructor, TagIterator(String url). The url parameter is the URL
that this TagIterator will iterate over.
There is a urlList() method that returns a List<String> containing all the hrefs found
in anchor tags in the URL on which this TagIterator is based.
The methods may throw exceptions if that helps you (even though your program must
catch all exceptions and print or display appropriate error messages instead of
showing the exceptions to the user).

Again, you may add other methods if you like, but we will rely on these.
A2, with these methods:

main(), which expects the starting URL as the first "command-line" argument.
checkURL(List<String> urls), a static method that removes the first element in urls
and checks it to see whether its tags are properly matched. The method returns the
empty string "" if the tags do match, or an error message if they do not.
The checkURL() method also adds to the list urls all the links that it finds in the URL
that it checks.

Details: tag matching

While checking for matching tags, you must detect the first error in the HTML and display an
error message about it. Do not display any further error messages for that URL, even if there
are more errors.
Even if the HTML you are examining does not have properly matching tags, you must extract
all the links you can from it and check them.
In our test cases, hrefs will appear only as part of 'a' tags, and no other attributes will be in 'a'
tags.
An opening tag "<x y="z">" is closed by "</x>". That is, the closing tag does not need to
mention the attributes of the opening tag. Also, you can assume there is no space between

the '/' and the rest of the tag name. The '/' is considered to be part of the tag name.

10/ 31/ 12 CSC207H: Assignm ent 2

3/ 4f ile: / / / E: / backup- 20- oct - 2012/ Z/ Teaching/ 0ar chive/ 207- all/ csc207_f 08_ut m / assignm ent s/ a2. ht m l

the '/' and the rest of the tag name. The '/' is considered to be part of the tag name.
Both tags and attribute names may be capitalized arbitrarily: "em" or "EM" or "Em" or "eM";
"href" or "HREF" or "HreF" or "hrEF" and so on. You should preserve the original
capitalization, but check for matching with capitalization ignored.
Tags must nest properly. A closing tag must match the most recent opening tag. For
example, this
<a>PaulJim

is legal, but this
<a>PaulJim

is not legal.
Some opening tags may or may not have closing tags: <area>, <base>, <basefont>,
<body>,
, <col>, <colgroup>, <dd>, <dt>, <frame>, <head>, <hr>, <html>, ,
<input>, <isindex>, , <link>, <meta>, <option>, <p>, <param>, <tbody>, <td>, <tfoot>,
<th>, <thead>, <tr>. There is no way to tell when reading one of these opening tags whether
or not it will have a closing tag.
A tag with a '/' following the tag name, for example "
" or "
", is both an opening
and a closing tag, and matches itself. You can assume that the author of the HTML has
correctly chosen a tag that can legally close itself. Note that the closing '/' may be separated
from the tag name by a space.
The comment tag "<!-- -->" is special. In the middle may be any text at all, including other
tags, and all of it must be ignored.
Ignore tags that are not comments but have names beginning with "!".
Tags may span several lines. That is, the opening '<' and the closing '>' may be on different
lines, separated by one or many newline characters. Please omit the newlines from the tags
you return, but not any other characters.
You may assume that we will not put '>' inside the attribute values or forget the final
quotations on the end of an attribute value.

Details: visiting the URLs

You must complete checking one URL before starting on another.
The user will specify a single URL. Check that one first, and then the URLs it links to directly
— at a "distance" of 1 — and then the URLs at a link distance of 2 from the original URL, and
so on. If you think of the set of URLs as a tree, with the links as edges, then you are visiting

the nodes in breadth-first order: the root, then its children, then its grandchildren, and so on.
Stop after visiting five URLs. (We may change that number; watch for announcements.)
Here's how to get a BufferedReader from a URL:

 new BufferedReader(new InputStreamReader(new URL(url).openStream()))

Suggestions on algorithms and data structures

To visit nodes in breadth-first order, use a queue to save the unvisited URLs.
That is, keep a list, and add newly-discovered URLs to the end of the list.

The web is not a tree. To avoid infinite recursion, you must stop yourself from re-
visiting previously visited URLs. Keeping a set of visited URLs and checking it

before each visit is one way to solve this problem.

10/ 31/ 12 CSC207H: Assignm ent 2

4/ 4f ile: / / / E: / backup- 20- oct - 2012/ Z/ Teaching/ 0ar chive/ 207- all/ csc207_f 08_ut m / assignm ent s/ a2. ht m l

before each visit is one way to solve this problem.

To check for matching pairs of nested tags, a stack is the obvious mechanism:
push the opening tag, and pop it when you see the closing tag. Self-closing tags
and tags with optional closers add interest, but not a great deal of difficulty.

You may want to define your own exceptions. It's very easy: extend the class
RuntimeException, and implement the no-argument constructor and the constructor
that accepts one String argument. Each constructor should just call the parent
class's constructor with the same argument list.

Make sure, however, that the user never sees your exceptions. A diagnostic
message about the URL is appropriate, but not a program crash.

Implementing the TagIterator class can be a bit more interesting than you might
first imagine but not because of "trick cases" where attribute values include the
symbols < or >. Our test cases won't do that and your code doesn't have to
handle it. What makes the design of the TagIterator interesting, is that you need
to allow the user to call hasNext() as many times as he likes (including zero
times) before calling next() and still have both methods work properly. You also
can't keep rereading the file from the URL. So, while you need to look ahead to
determine the return value for hasNext() you can't count on the user even calling
the hasNext() method between every call to next(). Think carefully about how to
design your TagIterator class before you even start it on the computer.

