
Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet.utoronto.ca/20075/csc207h1y/

Office: BA 4261
Office hours: R 5-7

Acknowledgement: These slides are based on material by Prof. Karen Reid

CSC207H: Software Design

Software house: what happens inside?

Software house: what happens inside?

Understand the requirements

Design the software

Write the program

Test the program

Write Documentation

Package the program!

Software house: what happens inside?

Understand the requirements

Design the software

Write the program

Test the program

Write Documentation

Package/Sell/Market

Project Managers Group

Architects Group

Development/Programmer Group

QA Group

Documentation Group

Marketing/Sales Group

Tools in a Software House

Tools in a Software House

• Programming Language(s)!
• Scripting Language(s)
• Integrated Development Environment (IDE) App
• Profiling Tools
• Version Control App
• Quality Assurance Framework
• Software Build Management Framework
• Requirements/Feature Tracking App
• Variance Tracking App
• Architecture Tools

Tools in a Software House

Tool Used By
Programming Language

Scripting Language

IDE

Profiling tools

Version Control App

Quality Assurance Framework

Software Build Management Framework

Requirements/Feature Tracking App

Variance Tracking App

Architecture Tools

Tools in a Software House

Tool Used By
Programming Language Programmers
Scripting Language Programmers

IDE Programmers

Profiling tools Programmers, QA

Version Control App Programmers, QA

Quality Assurance Framework Programmers, QA
Software Build Management Framework Programmers

Requirements/Feature Tracking App Managers, QA, Programmers,
Architects

Variance Tracking App Programmers, QA, Managers

Architecture Tools Architects, Programmers

Course Content
• Software Tools:

– Version control
– Build management
– Testing

• Software Design:
– object-oriented programming
– program design (design patterns, testing patterns)
– Reflection, refactoring

• Automation:
– Python programming language
– Shell scripting

Version Control App

• How do you keep track of changes to your
program?

• Option 1: Don't bother
– Hope you get it right the first time
– Hope you can remember what changes you made if you

didn't
– (You probably won't get it right)
– (Or remember)
– (You will end up rewriting code)
– (I do!)

Problem 1: working solo

• Option 2: Periodically save “backups”
– Save snapshots of your program in another directory or

under a different name
• E.g. Main.1.java, Main.2.java
• Or save it in a directory by date

– Problems:
• Totally ad hoc
• Only the programmer knows how to interpret the names
• Hard to pick a version to go back to
• Prone to error
• No tools to help you

Working solo (cont.)

• How do you coordinate who has the authority to
change a file?

• Worry about it after the fact
– “Hey, why is this broken?”
– “My changes got overwritten!”
– “You weren't supposed to change that file.”

• Exchange email
– “Okay, I'm going to work on A.java, so don't touch it.”

Problem 2: working in a team

• After a hard day of work in the lab, you want to go
home and do some work at home in the evening.

• How do you know which files to copy to your
home machine?

– Copy everything
• potentially slow
• might overwrite something you did at home, but forgot to copy

from home to school

• Try to remember what changed
– highly likely to get it wrong

Problem 3: moving around

• Keep code in a central location (“repository”)
– This is the master copy
– Never directly modify this directory

• Create a local copy of the repository in your
account at school, on your machine at home, on
your laptop...

Solution: version control

• When the local copy changes, “commit” the
changes to the repository

Commit

• When you get something working, commit
the changes

• Tools allow you to revert to a previous
version

• Write good log messages so that you don't
have to remember what changed in each
version

Solving problem 1

• What if two (or more) people want to edit the same
file at the same time?

• Option 1: prevent it
– Only allow one writeable copy of the file
– Pessimistic concurrency
– Microsoft Visual SourceSafe

• Option 2: patch up afterward
– Optimistic concurrency
– "Easier to get forgiveness than permission"
– CVS, Perforce, Subversion

Managing concurrency

Optimistic concurrency: example

Angela commits changes

Hassan tries to commit changes

Hassan updates his version

Hassan now commits

• To resolve a conflict, Hassan must manually
fix the conflict before he commits

<<<<<<< A.java
Iterator i = changedGroups.iterator();
while (i.hasNext()) {

if (userNotInGroup(currentUser, (Group) i.next())) {
addUserToGroup(currentUser, (Group) i.next()));

}
}

=======
Iterator i = changedGroups.iterator();
while (i.hasNext()) {

Group g = (Group)i.next();
if (userNotInGroup(currentUser, g)) {

addUserToGroup(currentUser, g));
}

}
>>>>>>> 1.3

Conflict

• Storing entire copy of a file on every change
would require an enormous amount of disk
space

• Version control systems store incremental
differences

• The incremental differences allow the
system to reconstruct previous versions

Storage scheme

• “Concurrent Version System”
• Background information:

– Each project is called a module
– Command-line tool on Unix and Windows
– Built on top of older system called RCS
– Several graphical and web interfaces
– The Eclipse IDE has a CVS feature

• We will create one repository for each of you
• You will use CVS to submit work in this course

CVS

• cvs checkout [module] Get initial copy
– Do this every time you want to get a new copy of a

module
– CVS path to repo on CDF:

/u/csc207h/summer/pub/repo/CDFid
– Tip for exercises: after you commit the version you

want us to mark, check out a fresh copy and test it on
CDF

• cvs add [filenames] Add new files
– Notifies CVS that you want it to track the new files
– add must almost always be followed by a commit

because add doesn't actually modify the repository

Common CVS commands

• cvs update [filenames] Synchronize with repository
– Copies stuff from the master repository to your local

copy
– Any commits made by another person or commits done

by you from another local copy will be updated in your
local copy

– Does not change the repository
– Watch the messages closely

• cvs commit [filenames] Commit local changes
– Copy changes to the repository
– Will only be allowed if local copy is up to date

Common CVS commands

• cvs remove [filenames] Remove files from repository
– Must first remove the file from the local copy
– It is not easy to remove directories
– Need to commit, just like for add

• cvs diff [filenames] Show diffs between local
• copy and

repository
– Handy to see what changed between versions

• cvs log [filenames] Show history of files
– Shows log message, timestamps and who made the

revisions

Common CVS commands

• CVS replaces strings like $Keyword:$ with
associated value during check-in

• $Author: mcraig $
• $Date: 2006/06/06 13:59:59 $
• Always in Universal Time

– Don't let cvs log fool you
• $Revision: 1.1.1.1 $

Keyword expansion

• Often embed these values in strings, rather
than in comments

• class Something implements Versioned {
• public static final String VERSION = "$Revision: 1.1.1.1

$";

• public String getVersion() {
• return VERSION.split(' ')[1].trim();
• }
• }

Keyword expansion

• CVS treats files as text by default
– Tries to perform keyword expansion
– Tries to translate Unix and Windows line endings

• Often don't want this
– E.g. image files
– Add with cvs add -kb filename

• kb means "binary"

• Manual explains how to set file type after the fact

File types

• Check in anything you created by hand
– Your own little test programs
– And their expected output
– Readme files, notes, build logs, etc.

• Don't check in files that are automatically created
from others. E.g. .class files
– Uses disk space and bandwidth for no reason: they get

overwritten the next time you compile

What to check in?

• Version control is not a backup system
– Your computer should have one of those
– It's not a synchronizing tool, either

• Don't check in just because you're taking a break to
surf the web

• DO check in files when they are stable
– E.g. after adding a new feature, or passing another test

• Or when you have to move from location to
location
– E.g. from home to school or vice versa

When to check in?

Other Version Control Systems?

Other Version Control Systems?

Other Version Control Systems?

New Java features

Review of new Java features

• Java 5.0 introduced (at least) three language
features
– http://java.sun.com/j2se/1.5.0/docs/guide/language/
– Autoboxing/unboxing

• Automatically converts primitives (such as int) to wrapper
classes (such as Integer)

– Enhanced for loop
• New concise syntax for iterating through a collection

– Generics
• Constrain what kinds of objects collections such as Vectors,

ArrayLists, Maps, and Sets can contain
• Removes need for annoying typecasts and instanceof

checks

Before Autoboxing/unboxing

• Write a program that returns the sum of the elements in
Integer array?

Autoboxing/unboxing
• This automatically creates an Integer object:

– Integer i1 = 3; // autoboxing
– int i2 = i1; // unboxing

• Note that this doesn’t have a call to intValue:
– /** Return the sum of the elements in a */
– public static int sum(Integer[] a) {
– int result = 0;
– for (int i = 0; i != a.length; i++) {
– result += a[i]; // unboxing
– }
– return result;
– }

Before Enhanced for loop

• Write a program that returns the sum of the elements in
Integer array?!

Enhanced for loop
• Removes need for indexing:

– /** Return the sum of the elements in a */
– public static int sum(Integer[] a) {
– int result = 0;
– for (Integer i : a) {
– result += i;
– }
– return result;
– }

• (Sure beats the old way, doesn’t it?)

Enhanced for loop (cont.)
• Another example, using an ArrayList instead of an array:

– /** Return the sum of the elements in a
– * Note the parameter type: more on following slides. */
– public static int sum(ArrayList<Integer> a) {
– int result = 0;
– for (Integer v : a) {
– result += v;
– }
– return result;
– }

• The old way:
– Iterator iter = a.iterator();
– while (iter.hasNext()) {
– Integer v = (Integer) iter.next();
– …

Before Java generics

• Write a program that iterates on a vector of strings and
prints them ?

Java generics

• Java 1.4:
– When you take something out of a collection (such as

Vector) you must cast it
– You can’t say “I want a list of Dates”; instead, you

must work with Objects
– New feature: generics

• Java 1.5 generics:
– Can specify what type a collection should contain

when you declare it
– Can only insert objects of that type
– No need to cast when you get them back out

Java generics

• Examples of collections using generics:
– java.util.Set<E>, java.util.List<E>
– The <E> specifies a generic type
– Can declare Sets and Lists of whatever we want

– A list that can only hold Strings:
• List<String> a = new ArrayList<String>();
• a.add("Look ma, no cast on the next line");
• String result = a.get(0);
• a.add(new Date()); // compile error!

The sum() example again
• Our example uses generics, autoboxing, and the new for loop. Why is

it good?
– public static int sum(ArrayList<Integer> a) {
– int result = 0;
– for (Integer v : a) {
– result += v;
– }
– return result;
– }

• New safety and ease:
– Can only call sum with lists that contain only Integers
– No need for a typecast or a call to intValue
– No need to create an Iterator

The sum() example again
• Our example uses generics, autoboxing, and the new for loop. Why is

it good?
– public static int sum(ArrayList<Integer> a) {
– int result = 0;
– for (Integer v : a) {
– result += v;
– }
– return result;
– }

• New safety and ease:
– Can only call sum with lists that contain only Integers
– No need for a typecast or a call to intValue
– No need to create an Iterator

50

• Want to associate pairs of values where one
of the values is guaranteed to be unique

• Example: match people with their favourite
chocolate bar
– "Michelle" => "Coffee Crisp"
– "Paul" => "Kit Kat"
– "Karen" => "Smarties"

• How would we do this with a list?

A common problem

• A list is a function from 0..N-1 to values
• As a list of pairs:

– [["Darwin", "Snickers"], ["Newton", "Mars Bar"],
["Turing", "Kit Kat"]]

• A map is a function from keys to values
• As a map:

– {"Newton"="Mars Bar", "Darwin"= "Snickers",
"Turing"="Kit Kat"}

• Note: Maps are unordered

Solution: maps

• Each key can appear at most once and has
only one value

• Also called hashes (Perl), dictionaries
(Python), and associative arrays (ancient)

Maps

• Generic properties of maps defined by
interface java.util.Map<K, V>: a Java interface
that maps keys of type <K> to values of type <V>

• Classes implementing Map:
– HashMap, TreeMap
– Take CSC263H to learn how to choose

Interface and Implementation

• To insert key/value pairs:
– /**
– * Associate value with key and return the
– * previous value associated with key, or
– * null if there was no previous mapping.
– */
– public V put(K key, V value)

• To get a printable version, use toString, which uses this
format:

– {key1=value1, key2=value2, ...}

Putting values in

• public class Birthday {
• public static void main(String[] args) {
• Map<String, Integer> m =
• new HashMap<String, Integer>();
• m.put("Newton", 1642);
• m.put("Darwin", 1809);
• System.out.println(m);
• }
• }
• {Darwin=1809, Newton=1642}

Birthday example

• To retrieve the value associated with a key:
– /**
– * Return the value associated with key,
– * or null if the key is not in the map.
– */
– public V get(Object key)

• To check whether a key is in the map:
– /**
– * Return true if the map contains a value
– * associated with key
– */
– public boolean containsKey(Object key)

Getting values out

• Often iterate by getting the set of keys, and
iterating over that

– Set<String> keys = m.keySet();
– Iterator<String> i = keys.iterator();
– while (i.hasNext()) {
– String key = i.next();
– System.out.println
– (key + "=>" + m.get(key));
– }
– Darwin=>1809
– Newton=>1642

Iterating

• Or, using the new for loop:
– Set<String> keys = m.keySet();
– for (String key : keys) {
– System.out.println(
– key + "=>" + m.get(key));
– }

Iterate using new for loop

• public static void main(String[] args) {
• String[] data = "Be Mg Mg Ca Be Mg".split(" ");
• Map<String, Integer> m =
• new HashMap<String, Integer>();
• for (String d : data) {
• if (!m.containsKey(d)) {
• m.put(d, 1);
• } else {
• m.put(d, m.get(d) + 1);
• }
• }
• System.out.println(m);
• } {Ca=1, Mg=3, Be=2}

Counting

• public static void main(String[] args) {
• Map<String, String> byName =
• new HashMap<String, String>();
• byName.put("Darwin", "748-2797");
• byName.put("Newton", "748-9901");
• Map<String, String> byPhone =
• new HashMap<String, String>();
• for (Map.Entry<String, String> e : byName.entrySet()) {
• byPhone.put(e.getValue(), e.getKey());
• }
• System.out.println(byPhone);
• } {748-2797=Darwin, 748-9901=Newton}

Inverting

• Do not modify key objects: location in map is
computed from key contents (“hash code”)

– Can't change Strings
– But, you can change sets, lists, etc.

• What happens if you do?
– Entry is now filed in the wrong location
– May not be found the next time you search
– Very hard to track down

Caution #1

• If you override method equals, override
hashCode as well

– a == b iff a and b are the same object
– a.equals(b) checks to see if a and b refer to

objects that have the same value
– If a.equals(b), then a.hashCode() and

b.hashCode() must return the same value
– Why? Because that's how maps do lookups

Caution #2

• There are three file-like objects associated
with every program:

– stdin – standard input, usually from the
keyboard (System.in)

– stdout – standard output, usually to the screen
(System.out)

– stderr – standard error, usually to the screen
(System.err)

Reminder: Standard input and
output streams

• BufferedReader input;
• input = new BufferedReader(new FileReader("filename"));

• input = new BufferedReader(new
InputStreamReader(System.in));

• String line;
• while((line = input.readLine()) != null) {
• // do something
• }

Reminder: I/O

• We can use the same file abstraction to read from
strings (and print to them):
– input = new BufferedReader(
– new StringReader("A string"));

• Primary advantage is for testing
• We can keep all test code in a single file, but use

the same interfaces
• It is a lot faster

Trick: reading from Strings

• Work at school first
– working at home is great, but
– we mark your work on CDF
– you need to learn Unix

• There are tools to help you work in multiple
places (CVS, a version control system)

E1-Getting Started

• To work at home you need to install:
– Microsoft Windows:

• Cygwin – a Unix-like command interface for Microsoft Windows that
provides CVS, ssh, editors, etc.

– Every operating system:
• Java – version 1.5
• Eclipse – An IDE

– Take the time now to learn it
• JUnit
• Python – version 2.4.1

– Reminder: we mark everything on CDF
• “It worked at home” won’t get you anywhere

• See “Useful links” on the course web page

E1-Getting Started

•Use Exercise 1 to learn new tools
• Unix tools and programs
• CVS
• Eclipse

•Use the discussion board
• ask for help installing software (ask your peers, and

answer them)

•Get started on assignments early!

E1-Getting Started

• “Any new tool or working practice initially
makes you less productive.”

• Always faster to solve the immediate
problem the old way (in particular, DrJava)

• Don't let that stop you from learning new
tools and skills (in particular, Eclipse)

• In the “real” world, you will have to re-train
every three years

E1-Getting Started: Glass's Law

	CSC207H: Software Design
	Software house: what happens inside?
	Software house: what happens inside?
	Software house: what happens inside?
	Tools in a Software House
	Tools in a Software House
	Tools in a Software House
	Tools in a Software House
	Course Content
	Version Control App
	Problem 1: working solo
	Working solo (cont.)
	Problem 2: working in a team
	Problem 3: moving around
	Solution: version control
	Commit
	Solving problem 1
	Managing concurrency
	Optimistic concurrency: example
	Angela commits changes
	Hassan tries to commit changes
	Hassan updates his version
	Hassan now commits
	Conflict
	Storage scheme
	CVS
	Common CVS commands
	Common CVS commands
	Common CVS commands
	Keyword expansion
	Keyword expansion
	File types
	What to check in?
	When to check in?
	Other Version Control Systems?
	Other Version Control Systems?
	Other Version Control Systems?
	New Java features�
	Review of new Java features
	Before Autoboxing/unboxing
	Autoboxing/unboxing
	Before Enhanced for loop
	Enhanced for loop
	Enhanced for loop (cont.)
	Before Java generics
	Java generics
	Java generics
	The sum() example again
	The sum() example again
	A common problem
	Solution: maps
	Maps
	Interface and Implementation
	Putting values in
	Birthday example
	Getting values out
	Iterating
	Iterate using new for loop
	Counting
	Inverting
	Caution #1
	Caution #2
	Reminder: Standard input and output streams
	Reminder: I/O
	Trick: reading from Strings
	E1-Getting Started
	E1-Getting Started
	E1-Getting Started
	E1-Getting Started: Glass's Law

