
Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet.utoronto.ca/20075/csc207h1y/

Office: BA 4261
Office hours: R 5-7

Acknowledgement: These slides are based on material by Prof. Karen Reid (University of Toronto), 
Prof. Bits & Sundar (Purdue Univ.)

CSC207H: Software Design
Lecture 12



Design Patterns



Design Pattern Space
Creational Structural Behavioral
Factory Method
Abstract Factory
Builder
Prototype
Singleton

Adapter
Bridge
Composite
Decorator
Flyweight
Facade
Proxy

Interpreter
Template Method
Chain of 
Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor



Composite Pattern

• Facilitates the composition of objects into tree 
structures that represent part-whole hierarchies.

• These hierarchies consist of both primitive and 
composite objects.



Composite Design Pattern



Composite Pattern – Participants
• Component

– Declares interface for objects and for accessing children
– Implements default behavior

• Leaf
– No children; defines behavior for primitive objects

• Composite
– Defines behavior for components with children
– Stores children and implements children-related 

operations
• Client

– Manipulates objects in the composition thru’ 
Component interface.



Composite Pattern - Consequences

• Defines Class hierarchies for recursive 
composition.

• Makes clients simple (can treat composite 
structures and individual objects uniformly)

• Makes it easy to add new components (no code 
needed for components or for clients)

• Can make your design overly general – Harder 
to restrict the components of a composite.



Example 1



Example 2: AWT Class Hierarchy



Composite example: layout
Container north = new JPanel(new FlowLayout());
north.add(new JButton("Button 1"));
north.add(new JButton("Button 2"));

Container south = new JPanel(new BorderLayout());
south.add(new JLabel("Southwest"), BorderLayout.WEST);
south.add(new JLabel("Southeast"), BorderLayout.EAST);

Container cp = getContentPane();
cp.add(north, BorderLayout.NORTH);
cp.add(new JButton("Center Button"), 

BorderLayout.CENTER);
cp.add(south, BorderLayout.SOUTH);



In a Utopian Object Oriented World!
• Every class must know how to paint itself (if it is a visual 

component)

• Every class must know how to load and save itself from file (xml 
or otherwise)

• Every class must know how to add/subtract itself 
from other objects who are of the same type (i.e. operator
support).

• Every class which has children (a composite) must provide the 
client with an iterator interface to access children

Class definition (for a given problem domain) must be as complete as possible



Design Pattern Space
Creational Structural Behavioral
Factory Method
Abstract Factory
Builder
Prototype
Singleton

Adapter
Bridge
Composite
Decorator
Flyweight
Facade
Proxy

Interpreter
Template Method
Chain of 
Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor


	CSC207H: Software Design�Lecture 12
	Design Patterns
	Design Pattern Space
	Composite Pattern
	Composite Design Pattern
	Composite Pattern – Participants
	Composite Pattern - Consequences
	Example 1
	Example 2: AWT Class Hierarchy
	Composite example: layout
	In a Utopian Object Oriented World!
	Design Pattern Space

