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Design Patterns
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Composite Pattern

• Facilitates the composition of objects into tree 
structures that represent part-whole hierarchies.

• These hierarchies consist of both primitive and 
composite objects.



Composite Design Pattern



Composite Pattern – Participants
• Component

– Declares interface for objects and for accessing children
– Implements default behavior

• Leaf
– No children; defines behavior for primitive objects

• Composite
– Defines behavior for components with children
– Stores children and implements children-related 

operations
• Client

– Manipulates objects in the composition thru’ 
Component interface.



Composite Pattern - Consequences

• Defines Class hierarchies for recursive 
composition.

• Makes clients simple (can treat composite 
structures and individual objects uniformly)

• Makes it easy to add new components (no code 
needed for components or for clients)

• Can make your design overly general – Harder 
to restrict the components of a composite.



Example 1



Example 2: AWT Class Hierarchy



Composite example: layout
Container north = new JPanel(new FlowLayout());
north.add(new JButton("Button 1"));
north.add(new JButton("Button 2"));

Container south = new JPanel(new BorderLayout());
south.add(new JLabel("Southwest"), BorderLayout.WEST);
south.add(new JLabel("Southeast"), BorderLayout.EAST);

Container cp = getContentPane();
cp.add(north, BorderLayout.NORTH);
cp.add(new JButton("Center Button"), 

BorderLayout.CENTER);
cp.add(south, BorderLayout.SOUTH);



In a Utopian Object Oriented World!
• Every class must know how to paint itself (if it is a visual 

component)

• Every class must know how to load and save itself from file (xml 
or otherwise)

• Every class must know how to add/subtract itself 
from other objects who are of the same type (i.e. operator
support).

• Every class which has children (a composite) must provide the 
client with an iterator interface to access children

Class definition (for a given problem domain) must be as complete as possible
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