
Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet.utoronto.ca/20075/csc207h1y/

Office: BA 4261
Office hours: R 5-7

Acknowledgement: These slides are based on material by Prof. Karen Reid

CSC207H: Software Design
Lecture 2

UNIX && the Shell

3

What is UNIX?

• UNIX is an operating system like Windows or Mac OS X

• From wikipedia:

An operating system (OS) is a set of computer programs that manage the
hardware and software resources of a computer. An operating system processes
raw system and user input and responds by allocating and managing tasks and
internal system resources as a service to users and programs of the system. At the
foundation of all system software, an operating system performs basic tasks such
as controlling and allocating memory, prioritizing system requests, controlling
input and output devices, facilitating networking and managing file systems.

4

UNIX History

UNIX is a “standard”,

i.e. there isn't *a* UNIX,

but multiple implementations

of the UNIX design

(Linux, BSD, Solaris,

AIX, OS X)

Features that made UNIX a hit

• Multitasking capability

• Multi-user capability

• Portability

• UNIX programs (tools, utilities)

• Library of application software

UNIX philosophies

• How software should be written???

– a program should do one thing only

– it should do it well

– complex tasks should be performed by using programs together

combining small building blocks to make larger one…

UNIX vs. MS Windows architecture
Application
Programs

Kernel

Hardware

Shell Window
Manager

UNIX (minimalist)

Application
Programs

Kernel

Hardware

DOS
Shell

Window
Manager

Windows

Why is UNIX better?

9

What is a Shell?

– ... a UNIX shell is a program that accepts and interprets
commands and then has the operating system execute them.

– It is not the operating system

Shell: the Execution Cycle
• When you type a command, the operating system:

– Reads characters from the keyboard
– Passes them to the shell

• The shell:
– Breaks the line of text into words
– Looks for the program identified by the first word
– Runs it, passing in the other words as arguments
– Sends its output to the OS

• The OS displays the output in the current window

Flavors of Unix Shells

• Two main flavors of Unix Shells
– Bourne (or Standard Shell): sh, ksh, bash, zsh

• Fast
• $ for command prompt

– C shell : csh, tcsh
• better for user customization and scripting
• %, > for command prompt

Shell Startup files
• sh,ksh:

profile (system defaults)
.profile

• bash:
.bash_profile
.bashrc
.bash_logout

• csh:
.login: executed when you logon
.cshrc: executed when a new shell is sprawned
.logout: executed at logout

Shell: shell and environment variables

• Shell variable
– a mechanism that can be used to hold pieces of

information for use by system programs or your
own use

• Environment variable
– a variable that is made available to commands

as part of the environment that the shell
maintains

Shell: creating environment variables

• In the C-shell and its derivatives:
– setenv variable-name value
e.g., setenv fruit apple

• In the Bourne shell and its derivatives:
– variable-name=value
export variable-name
e.g., fruit=apple

export fruit

Shell: creating shell variables

• In the C-shell and its derivatives, the command is:
– set variable-name=value
– (e.g., set fruit=apple)

• In the Bourne shell and its derivatives, the
command is:
– variable-name=value
– (e.g., fruit=apple)

Shell: listing variables

• To list a specific variable
– (e.g., echo $fruit)

• set
– C-shell - standard shell variables
– Bourne shell - all shell variables

• env
– environment variables only
– C-shell - "setenv"

Shell: local commands vs. internal commands

• Local commands
– such as ls, mv are part of the operating system
– run programs as part of that system

• Internal commands
– such as rehash.
– Each shell's own set of internal shell commands
– is what makes each shell different from the rest.

18

Shell: setting path/PATH

 Example of adding to your PATH:

 rehash lets shell know PATH was just updated

bash export PATH=$PATH:$HOME/bin:/directory2

tcsh
setenv PATH “${PATH}:${HOME}/bin:/directory2”

set path = ($path $home/bin:/directory2)

Shell: basic editing

keystroke function on command line
^P previous line
^N next line
^A beginning of line
^E end of line
^F forward 1 character
<esc>F forward 1 word
^B back 1 character
<esc>B back 1 word
^D delete under cursor
^K delete to end of line
^C cancel current CL, return prompt
^Z temporary interrupt (can also send to background, slide 38)

Introduction to Unix 20

Shell: Input/Output Redirection

 Most programs have three I/O streams:

• stdin – standard input

• stdout – standard output

• stderr – standard error.

 They all default to the console ("console"
means the keyboard for the input and the
screen for the output)

Introduction to Unix 21

Shell: Input/Output Redirection

 To redirect stdout of a program to a file:
bash: myprogram 1> output.log

tcsh: myprogram > output.log

 To redirect stderr of a program to a file:
bash: myprogram 2> error.log

 To redirect both stdout and stderr to same file (order
matters):

bash: myprogram > combined.log 2>&1

 To redirect both stdout and stderr separately:
(myprogram >output.log) >&error.log

Introduction to Unix 22

Shell: Input/Output Redirection

 Example of “>>” operator to append
information to a file:

prompt> date > foo

prompt> cat foo
Wed Aug 31 17:27:52 CDT 2005

prompt> date >> foo

prompt> cat foo
Wed Aug 31 17:27:52 CDT 2005
Wed Aug 31 17:27:56 CDT 2005

23

Shell: Input/Output Redirection
function tcsh bash

stdout to file comm >ofile comm > file
stderr to file comm 2> file

stdout/err to file comm >& ofile
comm >ofile 2>&1
comm &> ofile

stdin from file comm < ifile comm < ifile
stdout to end of file comm >> ofile comm >> ofile
stderr to end of file comm 2>> ofile
stdout/err to end comm >>& ofile comm >> ofile 2>&1
stdin until “c” comm <<c comm <<c
redirect stdin/out comm < ifile > file comm < ifile > file
stderr to third file comm < ifile > ofile 2> efile
stdout/err to 2 files (comm > ofile) >& efile

Shell: setting variables from a program

 Example of setting a new variable to the output value of
a command:
> current_date_time=`date`

> echo $current_date_time
Mon Apr 23 14:15:35 CDT 2007

 Another example (note pwd vs. $PWD):
> echo "I am in `pwd` on $HOST”
I am in /home/username on vmps08
> echo "I am in $PWD on $HOST”
I am in /home/username on vmps08

25

I/O Redirection - Pipes/Filters

 Pipelines are a set of processes chained by their standard
streams, so that the stdout of each process feeds directly as the
stdin of the next.

 Pipelines are defined using the “|” character.

 E. g., use a pipe and tee to direct output of echo to both stdout
and to a file:

prompt> echo "Hello World" | tee output.txt

function tcsh bash
pipe stdout to comm2 comm | comm2 comm | comm2

pipe stdout/err to comm2 comm |& comm2 comm 2>&1 | comm2

UNIX: files & programs

• file: collection of data

– UNIX treats everything as a file (including peripherals)

• program:

– collection of bytes representing code and data that are stored in a file

• process:

– a program in execution (currently running, loaded from disk into
RAM)

UNIX: file system

• The file system is the set of files and directories that the
computer can access

• "Everything that doesn't go away when the computer is
rebooted“

• Data is stored in files

• By convention, filename suffix
identifies data type
– E.g., .txt for text files, .mp3 for sound
– But it is just a convention
–

• On Unix, the file system has a unique root directory
called / (pronounced "slash")
– On Windows, every physical drive has its own root directory

So C:\home\hpotter\notes.txt is different from
D:\home\hpotter\notes.txt

• File and directory names are case-sensitive on most
Unix variants, but case-insensitive on Windows
– E.g., This.txt and this.txt are different files on Unix, but the

same file on Windows
– So you should never rely on casing to distinguish files

UNIX: file system

UNIX: file system directories

UNIX: file system directories

UNIX: file system directories

UNIX: file system navigation
• pwd (present working directory) shows the name

and location of the directory where you are currently
working: > pwd

/u/browns02

– This is a “pathname,” the slashes indicate sub-directories
– The initial slash is the “root” of the whole filesytem

• ls (list) gives you a list of the files in the current
directory: > ls

assembin4.fasta Misc test2.txt
bin temp testfile

– Use the ls -l (long) option to get more information about each file
> ls -l
total 1768
drwxr-x--- 2 browns02 users 8192 Aug 28 18:26 Opioid
-rw-r----- 1 browns02 users 6205 May 30 2000 af124329.gb_in2
-rw-r----- 1 browns02 users 131944 May 31 2000 af151074.fasta

UNIX: file permissions
• Use the ls -l command to see the permissions for all files

in a directory:
> ls -l
drwxr-x--- 2 browns02 users 8192 Aug 28 18:26 Opioid
-rw-r----- 1 browns02 users 6205 May 30 2000 af124329.gb_in2
-rw-r----- 1 browns02 users 131944 May 31 2000 af151074.fasta

– The username of the owner is shown in the third column. (The owner
of the files listed above is browns02)

– The owner belongs to the group “users”

• The access rights for these files is shown in the first
column. This column consists of 10 characters known as
the attributes of the file: r, w, x, and -

r indicates read permission
w indicates write (and delete) permission
x indicates execute (run) permission
- indicates no permission for that operation

> ls -l
drwxr-x--- 2 browns02 users 8192 Aug 28 18:26 Opioid
-rw-r----- 1 browns02 users 6205 May 30 2000 af124329.gb_in2
-rw-r----- 1 browns02 users 131944 May 31 2000 af151074.fasta

• The first character in the attribute string indicates if a
file is a directory (d) or a regular file (-).

• The next 3 characters (rwx) give the file permissions
for the owner of the file.

• The middle 3 characters give the permissions for other
members of the owner's group.

• The last 3 characters give the permissions for
everyone else (others)

• The default protections assigned to new files on our
system is: -rw-r----- (owner=read and write,
group =read, others=nothing)

UNIX: file permissions

UNIX: Change Protections
• Only the owner of a file can change its protections
• To change the protections on a file use the chmod

(change mode) command.
[Beware, this is a confusing command.]

– First you have to decide for whom you will change the access
permissions:

» the file owner (u)
» the members of your group (g)
» others (o) (ie. anyone with an RCR account)

– Next you have to decide if you are adding (+), removing (-), or
setting (=) permissions.

• Taken all together, it looks like this:
> chmod u=rwx g+r o-x myfile.txt
This will set the owner to have read, write, and execute permission; add the
permission for the group to read; and remove the permission for others to
execute the file named myfile.txt.

UNIX: sub-directories
• cd (change directory) moves you to another directory

>cd Misc
> pwd
/u/browns02/Misc

• mkdir (make directory) creates a new
sub-directory inside of the current directory > ls

assembler phrap space
> mkdir subdir
> ls
assembler phrap space subdir

• rmdir (remove directory) deletes a sub-directory, but
the sub-directory must be empty

> rmdir subdir
> ls
assembler phrap space

UNIX: file shortcuts

• There are some important shortcuts in Unix for
specifying directories

• . (dot) means "the current directory"

• .. means "the parent directory" - the directory one level
above the current directory, so cd .. will move you up one
level

• ~ (tilde) means your Home directory, so cd ~ will move
you back to your Home.

– Just typing a plain cd will also bring you back to your home
directory

Introduction to Unix 38

Unix: Processes and Multitasking

 To run a program in the background, use the “&”
character (or “^Z” followed by “bg”):

> myprogram &
[1] 7895

 myprogram is now running in the background as
process id (PID) 7895

 Whenever your process finishes, it will print “Done”
to the console.

Introduction to Unix 39

Unix: Processes and Multitasking

 To check on the status of your jobs running on the
system, use the ps command

> ps -a
PID TTY TIME CMD

8095 pts/3 00:00:00 ps

 You can get an expanded list by typing
ps agux, or by using the top command

 Use uptime to check the load average (how hard
system is working) on slowly responding machines

Things You Should Know

< | >whichwcuniq

tailsortrmdirrm

pwdpasswdodmv

moremkdirmanls

headechodiffdate

cpclearcdcat

• Become expert in either one of the following

• emacs (very popular)
Has menu bar like MS word along with keyboard
shortcuts
http://www.ucc.ie/doc/editing/emacs.html

• vi (less commonly used) vim is a more
robust version

– http://www.linux.org/lessons/beginner/l5/lesson5c.ht
ml

Text Editors

UNIX: online help
• man

– Detailed description of a command

• info
– More complete descriptions of certain packages

• help
– Display helpful information about builtin commands

• apropos
– Search the manual page names and descriptions

• whatis
– display manual page descriptions

UNIX: Where To Go

• Links from the 207/B07 site – Unix commands
• and a Unix Tutorial for Beginners

• Deboray S. Ray and Eric J. Ray: Unix.
• Peachpit Press, 2003, 0321170105.

Systematic Testing

Software house: what happens inside?

Understand the requirements

Design the software

Write the program

Test the program

Write Documentation

Package/Sell/Market

Project Managers Group

Architects Group

Development/Programmer Group

QA Group

Documentation Group

Marketing/Sales Group

Types of Software Testing
• Component/unit testing

– Individual classes or types

• Development testing
– Also called DIT (development integration testing)
– Group of related classes or types

• System testing
– Also called SIT (system integration testing)
– Interaction between classes

• User Acceptance testing
– Also called UAT
– Interaction between user and program interface

Software Testing Lifecycle

Unit
Testing DIT SIT

During
coding of a component
By developers

After integration
of various components
By developers/QA

After building the whole
application
By QA mostly

followed
by

followed
by

UAT
followed

by

After alpha
release
By QA

• Also called component testing

• Testing in isolation all operations associated with an object

• Setting and querying all attributes (data members) of an
object

• Verify a small chunk of code, typically a path through a
method or function. Not application level functionality.

• Exercising the object in all possible states
– boundary conditions
– both success and failure
– general functionality

Unit testing

Why is Unit Testing Good?

• Identifies defects early in the development cycle.

• Many small bugs ultimately leads to chaotic system behavior

• Testing affects the design of your code.

• Successful tests breed confidence.

• Testing forces us to read our own code – spend more time
reading than writing

• Automated tests support maintainability and extendibility.

Why Don’t We Unit Test?

• “Coding unit tests takes too much time”

• “I’m to busy fixing bugs to write tests”

• “Testing is boring – it stifles my creativity”

• “My code is virtually flawless…”

• “Testing is better done by the testing department”

• “We’ll go back and write unit tests after we get the code
working”

• Testing the interaction of components

• For CSC207H assignments this will usually be
the whole program

• For larger systems this may involve sub-
components of the system

Development testing (DIT)

• This is not a new type of testing; it’s a technique

• Maintain a set of tests
– For Unit, DIT, SIT and even UAT

• Every time a change is made to the system, run the tests to
make sure everything that used to work still does

• When you add a new feature to the system, add new
regression tests

Regression testing

• Test or test case:
– A test case describes

1) an input,
2) action, or event and
3) an expected response, to determine if a feature of an application

is working correctly

Testing Terminology

• Fixture:
– The context of the test

• E.g. a data structure with a set of values
• In the simplest Java case, a single initialized object. One of

the methods of this object will be called.

• Possible results:
– pass: test produced the expected outcome
– fail: test ran but produced an incorrect outcome
– error: test failed to produce an answer: there is something wrong

with the test itself

Testing terminology

• Unit testing follows a pattern
– Lots of small, independent tests
– Reporting passes, failures, and errors
– Some optional shared setup and teardown (creating the fixture)
– Aggregation (combine tests into test suites)

So, how to do Unit testing?

• JUnit testing framework
– Written by Erich Gamma in 1997
– Now hosted at http://www.junit.org
– Has become the unofficial standard for Java testing
– Supported by many IDEs
– Widely imitated: C++, Perl, Python, .NET all have versions

• Once you know one, you can easily use others

JUnit

Test Hierarchies

• JUnit supports test hierarchies
– Test Suite-A

• Test Case1
• Test Case2
• Test Suite-B

– Test Case3
– Test Suite-C

(and so on …)

Key JUnit Concepts

• assert

• fail

• error

Junit assert/fail methods
• static void assertTrue(boolean test)

• static void assertFalse(boolean test)

• assertEquals(expected, actual)

• assertSame(Object expected, Object actual)

• assertNotSame(Object expected, Object actual)

• assertNull(Object object)

• assertNotNull(Object object)

• fail()

public class TestAdd extends TestCase {

public static void main(String[] args) {
TestSuite suite = new TestSuite();
suite.addTest(new TestAdd("testPositive"));
suite.addTest(new TestAdd("testNegative"));
TestRunner.run(suite);

}

public TestAdd(String name) { super(name); }

public void testPositive() {
assertEquals(4, 2 + 2);

}

public void testNegative() {
assertEquals((4), (-2) + (-2));

}

Example

public class TestAdd extends TestCase {

public static void main(String[] args) {
TestSuite suite = new TestSuite();
suite.addTest(new TestAdd("testPositive"));
suite.addTest(new TestAdd("testNegative"));
TestRunner.run(suite);

}

public TestAdd(String name) { super(name); }

public void testPositive() {
assertEquals(4, 2 + 2);

}

public void testNegative() {
assertEquals((4), (-2) + (-2));

}

Example

Junit testXXX

• A test method doesn’t return a result

• If the tests run correctly, a test method does nothing

• If a test fails, it throws an AssertionFailedError

• The JUnit framework catches the error and deals with it; you don’t have to do
anything

• E.g.
public void testPositive() {

assertEquals(4, 2 + 2);
}

• How do you test a case that is supposed to fail by throwing an
exception?

• Example 2:
public void testFromString() {

try {
int x = Integer.parseInt("m") + 3;
fail();

} catch (NumberFormatException e) {
// success

} catch (Exception e) {
fail();

}
}

Testing for exceptions

Example 3
import java.util.*;
import junit.framework.*;

public class SimpleTest extends TestCase{

public void testEmptyCollection() {
Collection testCollection = new ArrayList();
assertTrue(testCollection.isEmpty());

}

public static void main(String args[]){
junit.textui.TestRunner.run(SimpleTest.class);

}
}

JUnit Report

• The goal of a unit testing framework is to run
tests

– JUnit contains an interface, Test, that defines a
method run()

• Two classes implement Test
– TestCase for a single class
– TestSuite for a set of tests, possibly in multiple

classes
• Test methods are placed in a class that extends

TestCase
• TestCases can be added to a TestSuite

Junit under the hood..

public class TestAdd extends TestCase {

public static void main(String[] args) {
TestSuite suite = new TestSuite();
suite.addTest(new TestAdd("testPositive"));
suite.addTest(new TestAdd("testNegative"));
TestRunner.run(suite);

}

public TestAdd(String name) { super(name); }

public void testPositive() {
assertEquals(4, 2 + 2);

}

public void testNegative() {
assertEquals((4), (-2) + (-2));

}

Example

• The run method has three steps:
– public void run() {

setUp();
runTest();
tearDown();

}
• By default, setUp and tearDown do nothing

• Override setUp and/or tearDown to include test fixture
creation and clean-up that is common to a number of tests

Set up and tear down

Creating a test class in JUnit
1) Define a subclass of TestCase
2) Override the setUp() method to initialize object(s) under

test.
3) Override the tearDown() method to release object(s) under

test.
4) Define one or more public testXXX() methods that

exercise the object(s) under test and assert expected results.
5) Define a static suite() factory method that creates a

TestSuite containing all the testXXX() methods of the
TestCase.

6) Optionally define a main() method that runs the TestCase
in batch mode.

Guidelines for test case creation

• Test for success
– general cases
– well-formatted input
– boundary cases

• Test for failure
– invalid input
– will it throw the exceptions it is supposed to?

• Test for sanity
– if there is redundant information make sure it is maintained
– data structure consistency

Example: Counter class

• For the sake of example, we will create and test a
trivial “counter” class
– The constructor will create a counter and set it to zero
– The increment method will add one to the counter

and return the new value
– The decrement method will subtract one from the

counter and return the new value

• We write the test methods before we write the code

• Don’t be alarmed if, in this simple example, the JUnit tests
are more code than the class itself!

Example: Counter class

JUnit tests for Counter

public class CounterTest extends junit.framework.TestCase {
Counter counter1;

public CounterTest() { } // default constructor

protected void setUp() { // creates a (simple) test fixture
counter1 = new Counter();

}

protected void tearDown() { } // no resources to release

JUnit tests for Counter…

public void testIncrement() {
assertTrue(counter1.increment() == 1);
assertTrue(counter1.increment() == 2);

}
public void testDecrement() {

assertTrue(counter1.decrement() == -1);
}

} // End from last slide

The Counter class itself

public class Counter {
int count = 0;
public int increment() {

return ++count;
}
public int decrement() {

return --count;
}
public int getCount() {

return count;
}

}

Read Junit FAQ

http://junit.sourceforge.net/doc/faq/faq.htm

http://junit.sourceforge.net/doc/faq/faq.htm�

	CSC207H: Software Design�Lecture 2
	UNIX && the Shell
	What is UNIX?
	UNIX History
	Features that made UNIX a hit
	UNIX philosophies
	UNIX vs. MS Windows architecture
	Why is UNIX better?
	What is a Shell?
	Shell: the Execution Cycle
	Flavors of Unix Shells
	Shell Startup files
	Shell: shell and environment variables
	Shell: creating environment variables
	Shell: creating shell variables
	Shell: listing variables
	 Shell: local commands vs. internal commands
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	UNIX: files & programs
	UNIX: file system
	UNIX: file system
	UNIX: file system directories
	UNIX: file system directories
	UNIX: file system directories
	UNIX: file system navigation
	UNIX: file permissions
	> ls -l�drwxr-x--- 2 browns02 users 8192 Aug 28 18:26 Opioid�-rw-r----- 1 browns02 users 6205 May 30 2000 af124329.gb_in2�-rw-r----- 1 browns02 users 131944 May 31 2000 af151074.fasta�
	UNIX: Change Protections
	UNIX: sub-directories
	UNIX: file shortcuts
	Slide Number 38
	Slide Number 39
	Things You Should Know
	Text Editors
	UNIX: online help
	UNIX: Where To Go
	Systematic Testing
	Software house: what happens inside?
	Types of Software Testing
	Software Testing Lifecycle
	Unit testing
	Why is Unit Testing Good?
	Why Don’t We Unit Test?
	Development testing (DIT)
	Regression testing
	Testing Terminology
	Testing terminology
	So, how to do Unit testing?
	JUnit
	Test Hierarchies
	Key JUnit Concepts
	Junit assert/fail methods
	Example�
	Example�
	Junit testXXX
	Testing for exceptions
	Example 3
	JUnit Report
	Junit under the hood..
	Example�
	Set up and tear down
	Creating a test class in JUnit
	Guidelines for test case creation
	Example: Counter class
	Example: Counter class
	JUnit tests for Counter
	JUnit tests for Counter…
	The Counter class itself
	Read Junit FAQ

