
Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet.utoronto.ca/20075/csc207h1y/

Office: BA 4261
Office hours: R 5-7

Acknowledgement: These slides are based on material by Prof. Karen Reid

CSC207H: Software Design
Lecture 3

cvs: quick refresher

Software house: what happens inside?

Understand the requirements

Design the program

Write the program

Test the program

Write Documentation

Package/Sell/Market program

Project Managers Group

Architects Group

Development/Programmer Group

QA Group

Documentation Group

Marketing/Sales Group

Tools in a Software House

 Programming Language(s)
• Scripting Language(s)
• Integrated Development Environment (IDE) App
• Profiling Tools
 Version Control App (e.g. cvs)
• Quality Assurance Framework
• Software Build Management Framework
• Requirements/Feature Tracking App
• Variance Tracking App
• Architecture Tools

Tools in a Software House

Tool Used By
Programming Language Programmers
Scripting Language Programmers
IDE Programmers

Profiling tools Programmers, QA

Version Control App Programmers, QA

Quality Assurance Framework Programmers, QA
Software Build Management Framework Programmers

Requirements/Feature Tracking App Managers, QA, Programmers,
Architects

Variance Tracking App Programmers, QA, Managers

Architecture Tools Architects, Programmers

• Fundamental trade-off
– How quickly correct code can be written
– How quickly that code executes

• People are expensive

• Choose where to spend people time:

Tools in a Software House: languages

What’s Agile Development?
• What’s the time frame here?

– Months, weeks, years?

• Read wikipedia article:
http://en.wikipedia.org/wiki/Agile_software_development

Understand the requirements

Design the program

Write the program

Test the program

Write Documentation

Compiled Vs. Interpreted Languages?

Compiled Vs. Interpreted Languages?

1010101010101011111

Compiled Vs. Interpreted Languages?

1010101010101011111

Switch on Computer
Init memory

Move data here, read hard disk

Assembler

Low-level
commands

Compiled Vs. Interpreted Languages?

1010101010101011111

Switch on Computer
Init memory

Move data here, read hard disk

Assembler

import java.util.*;
Public static void main(…)
{
}

Compiler

Program
In High-level

Language
myprogram.java

Same program
in Assembly

Language
myprogram.asm

Same program
in binary

myprogram.exe

Low-level
commands

java

assembly

1s and 0s

Compiled Vs. Interpreted Languages?
Interpreter

myprogram.py

Low-level
commands

Python 101

What Is Python?

• Created in 1990 by Guido van Rossum
– While at CWI, Amsterdam
– Now hosted by centre for national research

initiatives, Reston, VA, USA
• Free, open source

– And with an amazing community
• Object oriented language

– “Everything is an object”

http://images.google.com/imgres?imgurl=http://www.cs.uga.edu/~maria/classes/4500-Spring-2007/figs/pythonLogoSmall.png&imgrefurl=http://www.cs.uga.edu/~maria/classes/4500-Spring-2007/&h=246&w=256&sz=27&hl=en&start=2&tbnid=idjObOhNkac9XM:&tbnh=107&tbnw=111&prev=/images%3Fq%3Dpython%2Blogo%26gbv%3D2%26svnum%3D10%26hl%3Den�

Why Python?
• Designed to be easy to learn and master

– Clean, clear syntax
– Very few keywords

• Highly portable
– Runs almost anywhere - high end servers and

workstations, down to windows CE
– Uses machine independent byte-codes

• Extensible
– Designed to be extensible using C/C++, allowing access

to many external libraries
• Agile language

Example program

• # Run with python helloworld.py
• # Note: no 'main()', no declarations.

• # Assign a string to a variable.
• str = "Hello"

• # Print strings, plus newline.
• print str, "world! "

Running Python Interperter

• Several options:
– From command line (good for debugging)

• python
– By putting code in a file, and loading it

• python helloworld.py
– By making a native executable

• Unix: Put this at top of file
– #!/usr/local/bin/python

• Windows: File association
– By compiling to a self-contained program

• Instructions are still actually interpreted

Python variables

• Variables are just names for values
• Created by use

– no declarations
• Variables don't have types, but values do

– x = 123
– y = "one two three"
– z = x + y
– TypeError: unsupported operand types for +

Define variables before use

• Must give a variable a value before using it
– Python doesn't try to guess a sensible value

– # This is the whole program
– print y
– NameError: name 'y' is not defined

Strings

• Use either single or double quotes
– print 'a', "b", '"c"', "'d'"
a b "c" 'd’

• Back-quoting converts value to string
– print "carbon-" + 14

TypeError
– print "carbon-" + `14`

carbon-14

Numbers and arithmetic

• Numeric types
– 14 is an integer (32-bit on most machines)
– 14.0 is a floating point (double – 64 bit)
– 1+4j is complex (2x64 bit)

• Python borrows C's numeric operators (very like
Java's)
– x = 5 * 4 + 3 # x now 23
– x -= 10 # x now 13
– y = x % 3 # remainder is 1

Booleans
• Like C, so much looser than in Java
• True and False are true and false
• Empty string, 0, and None are false
• (Almost) everything else is true
• Usual Boolean operators (and, or, not)

– short-circuit
– return the last thing evaluated rather than 1 or 0
– “a” or “b” # returns “a”
– 0 or “b” # returns “b”
– “a” and “b” # returns “b”
– “a” and 0 and (1/0) # returns 0

Comparisons

• Python borrows C comparisons
– results are always True or False

• Comparisons can be chained together, as in
mathematics
– print -1 < 0 < 1
– print -1 < 3 < 2

String operators

• Use + for concatenation and * for
multiplication
– greet = "Hi " + "there"
– # greet is Hi there

– jolly = "ho" * 3
– # jolly is “hohoho”

Nested statements: if and while

• Use colon and indentation to show nesting

• a = 3
• if a < 0:

– print "less"
• elif a == 0:

– print "equal"
• else:

– print "greater"

a = 3
while a > 0:

print a
a -= 1

Files

• Use built-in function open() to open a file
– first argument is a path
– second is "r" for read, or "w" for write

• Result is a file object
– input = open("file.txt", "r")
– output = open("copy.txt", "w")
– line = input.readline()
– while line:

• output.write(line)
• line = input.readline()

– input.close()
– output.close()

I/O, alternatively

• input = open("file.txt", "r")
• output = open("copy.txt", "w")
• for line in input:
• output.write(line)
• input.close()
• output.close()

I/O, alternatively alternatively

• input = open("file.txt", "r")
• contents = input.readlines()
• input.close()
• output = open("copy.txt", "w")
• output.writelines(contents)
• output.close()

Functions: a first pass

• def outside of a class defines a function
– These are classless and objectless methods

• Example: a simple function:
– # define function
– def average(x, y):

return (x + y) / 2.0

– # use function
– print average(20, 30)
– Output: 25.0

The rules for functions

• Define a new function using def
– Weird: the actually creates a function

object, then assigns it to a variable
• Argument names follow in parentheses

– No types for either return or parameters
• Finish at any time with return

– Functions without return statements return
None

Scope of variables
• Variables created in functions are local to the function
• x = 123
• def f(arg):
• x = arg
• print "x in f is", x

• f(999)
• print x
• x in f is 999
• 123

Recursion example

• def fac(n):
– if (n == 1):

• return 1
– else:

• return n*(fac(n-1))

• Note that this will get ugly if n is not an
integer - any suggestions?

• Object: instance of a class
• Class: defines possible operations and states

– Each instance is independent of all others

• Object-oriented languages support:
– Encapsulation: each instance manages its own state
– Polymorphism: the ability of the same method call to invoke

one of several different methods depending on an object’s
type

– Inheritance: define new classes by extending existing ones
– Reflection: Programs can inspect themselves

• not part of official OO definition, but useful

Object-oriented definitions

Creating a class in Python

• class Glorp:
– ... stuff ...

– def getValue(self):
• return self.value

– ... more stuff ...

Creating a class in Python

• A source file may define any number
of classes
– Start definition using the class keyword

followed by name of class
– Contents of class are indented

Methods in Python
• Methods

– Define using def; parameter list follows in
parentheses

– Indent body of method
– No return type, no types for parameters
– Finish at any time with return

• Methods without return statement return None
– Instance methods must have at least one parameter

• The first parameter represents the particular instance of the
class (i.e. this object)

• Convention: call this parameter self (sort of like this in Java)
• self is not given as an argument when this method is called

(except within the class itself)

Creating a class in Python

• Class members (cont'd):
– Methods (cont'd):

• methods can be called anything
• but method names beginning and ending with

double underscore mean special things
– For example, __init__ is the class’s constructor

– Instance Variables:
• Created by assignment to self.varname within a

method
• No declaration, just use!

• class Counter:
• def __init__(self):
• self.value = 0
• def step(self):
• self.value += 1
• def current(self):
• return self.value

• # Testing the class definition:
• c = Counter()
• print "initial value", c.current()
• c.step()
• print "after one step", c.current()
• c.nonExistentMethod()

Output:
initial value 0
after one step 1
AttributeError Counter instance
has no attribute
'nonExistentMethod'

Simple Counter class

Encapsulation

• Python does not enforce encapsulation
– No equivalent of protected or private
– Anyone can happily execute

• obj.value = "abc"

• Generally a bad idea
• Remember: the things that make it easy

to write code quickly in Python make it
harder to maintain.

Inheritance

• Extend a parent class to create a child class
– put parent’s name in parentheses after child’s

• Must invoke parent’s constructor explicitly
– Unlike Java, it can be called like any other method

– from counter import Counter
– class Stepper(Counter):
– def __init__(self):
– Counter.__init__(self)
– def reset(self):
– self.value = 0

Example: overriding Counter

• Methods defined in child take
precedence over those defined in parent

Output:
Ctr (parent) 0 : 1
Ctr (parent) 1 : 2
Incrnter (child) 0 : 3
Incrnter (child) 1 : 6

Example: overriding Counter
• class Incrementer(Counter):
• def __init__(self, increment=1):
• Counter.__init__(self)
• self.increment = increment
• def step(self):
• self.value += self.increment

• # Test the class:
• obj = Counter()
• for i in range(2):
• obj.step()
• print "Counter (parent) ", i, ":",obj.current()
• obj = Incrementer(3)
• for i in range(2):
• obj.step()
• print "Incrementer (child) ", i, ":",obj.current()

Class members

• Variables defined directly in the class belong to
the class
– Not related to any self instance
– Like static in Java

• Nothing equivalent for methods
– Concept is easy
– Coming up with a simple syntax has proven difficult
– We'll see later that it is possible to have methods that

are independent of classes: functions

Example

• A class variable:
• class Tracker:
• numCreated = 0
• def __init__(self):
• Tracker.numCreated += 1

• t1 = Tracker()
• t2 = Tracker()
• print Tracker.numCreated

• Output: 2

Example: __add__
• Specially-named methods associated with every

arithmetic operator
– __add__ for +
– __mul__ for *
– If x is an object, x+2 is really x.__add__(2)

• Operators also have right-hand methods
– E.g. __radd__, __rmul__
– So 2+x is x.__radd__(2)

• Execution order for a+b is:
– If a has a method __add__, call a.__add__(b)
– If b has a method __radd__, call b.__add__(a)
– Else use Python’s built-in default

Example: __add__
• # modInt: only has values in the range 0..base-1
• class modInt:
• def __init__(self, base):
• self.base = base
• self.value = 0
• def __add__(self, other):
• self.value += other
• self.value %= self.base
• return self
• def val(self):
• return self.value
• if __name__ == "__main__":
• a = modInt(3)
• for i in range(5):
• a = a + 1
• print a.val(),
• 1 2 0 1 2

Convert to integer
(int)

__int__(self)

Length (len)__len__(self)

Membership test (in)__contains__(self, item)

Indexing([])__getitem__(self, index)

Convert to string__str__(self)

Some other __special__ methods

Python and Java: differences
• Java:

– each file is a class

– execution starts with the main method of the class that is
loaded first

• Python:
– no need for classes in a file

– execution starts with the first executable statement in a file

– The execution of a class indentation block is storing the set
of statements that define the class

– Similarly, a def indentation block inside a class stores the
definition of a method

Creating and loading modules
• Any Python file can be loaded as a module

using import module
– File called xyz.py becomes module xyz

• Statements are executed as module loads
– Libraries typically just define constants and

functions
• Module contents referred to as

module.content
– E.g. sys.argv

• Can also use
• from module import name1, name2
• from module import *

• # stuff.py
• value = 123
• def printVersion():
• print "Stuff Version 2.2”

• # loader.py
• import stuff
• print stuff.value
• stuff.printVersion()

• $ python stuff.py
• $ python loader.py
• 123
• Stuff Version 2.2

Module: example

Modules: loading versus running

• Special variable __name__ is module's name
– Set to "__main__" when run from the command line
– Set to the module's name when loaded by something

else

• Often used to include self-tests in module
– Tests use assert when module run directly

Module: self-test
• class C:
• def double(self,val):
• return val * 2

• if __name__ == '__main__':
• print "testing C.double"
• c = C()
• assert c.double(0) == 0
• assert c.double('a') == 'aa'
• assert c.double([1]) == [1, 1]
• print "tests passed"

	CSC207H: Software Design�Lecture 3
	cvs: quick refresher
	Software house: what happens inside?
	Tools in a Software House
	Tools in a Software House
	Tools in a Software House: languages
	What’s Agile Development?
	Compiled Vs. Interpreted Languages?
	Compiled Vs. Interpreted Languages?
	Compiled Vs. Interpreted Languages?
	Compiled Vs. Interpreted Languages?
	Compiled Vs. Interpreted Languages?
	Python 101
	What Is Python?
	Why Python?
	Example program
	Running Python Interperter
	Python variables
	Define variables before use
	Strings
	Numbers and arithmetic
	Booleans
	Comparisons
	String operators
	Nested statements: if and while
	Files
	I/O, alternatively
	I/O, alternatively alternatively
	Functions: a first pass
	The rules for functions
	Scope of variables
	Recursion example
	Object-oriented definitions
	Creating a class in Python
	Creating a class in Python
	Methods in Python
	Creating a class in Python
	Simple Counter class
	Encapsulation
	Inheritance
	Example: overriding Counter
	Example: overriding Counter
	Class members
	Example
	Example: __add__
	Example: __add__
	Some other __special__ methods
	Python and Java: differences
	Creating and loading modules
	Module: example
	Modules: loading versus running
	Module: self-test

