
Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet.utoronto.ca/20075/csc207h1y/

Office: BA 4261
Office hours: R 5-7

Acknowledgement: These slides are based on material by Prof. Karen Reid

CSC207H: Software Design
Lecture 4

Python: functions & classes

Functions

• A function is a reusable piece of a program.
• Functions are defined with def

>>> def square(x):

... return x*x

>>> print square(8)

64

• Optional arguments:
>>> def power(x, exp=2): # exp defaults to 2
... if x <= 0: return 1

... else: return x*power(x, exp-1)

Classes

• A class is a kind of object (like lists or strings) that
contains variables and operations (or methods)

• The simplest class:
>>> class Simple: pass

• Class objects are created with the constructor,
which has the same name as the class:
>>> obj = Simple()

• Variables are accessed as obj.var
>>> obj.x = 3

An Example Class
>>> class Account:
... def __init__(self, initial):
... self.balance = initial
... def deposit(self, amt):
... self.balance = self.balance + amt
... def withdraw(self,amt):
... self.balance = self.balance - amt
... def getbalance(self):
... return self.balance

• __init__ defines the constructor
• self is the object that is being manipulated.

– It is the first argument to every method.

Using the example class
>>> a = Account(1000.00)

>>> a.deposit(550.23)

>>> print a.getbalance()

1550.23

>>> a.deposit(100)

>>> a.withdraw(50)

>>> print a.getbalance()

1600.23

Why’s the self?

Boot Process

User
Process 1

User
Process 2

User
Process 3

0000000

FFFFFFFF

Why’s the self?

Boot Process

User
Process 1

User
Process 2

User
Process 3

0000000

FFFFFFFF

Code segment

Data segment

Why’s the self?
Public Circle
{

float fRadius;

public float getRadius()
{

return fRadius;
}

}
fRadius = 5.0
fRadius = 10.0
fRadiu = 13.0

Code segment

Data segment

Circle circle1 = new Circle(5.0);
Circle circle2 = new Circle(10.0);
Circle circle3 = new Circle(13.0);

System.out.println(circle1.getRadius());

System.out.println(circle2.getRadius());

System.out.println(circle3.getRadius());

Creating a class in Python

• A source file may define any number
of classes
– Start definition using the class keyword

followed by name of class
– Contents of class are indented

Methods in Python
• Methods

– Define using def; parameter list follows in
parentheses

– Indent body of method
– No return type, no types for parameters
– Finish at any time with return

• Methods without return statement return None
– Instance methods must have at least one parameter

• The first parameter represents the particular instance of the
class (i.e. this object)

• Convention: call this parameter self (sort of like this in Java)
• self is not given as an argument when this method is called

(except within the class itself)

Creating a class in Python

• Class members (cont'd):
– Methods (cont'd):

• methods can be called anything
• but method names beginning and ending with

double underscore mean special things
– For example, __init__ is the class’s constructor

– Instance Variables:
• Created by assignment to self.varname within a

method
• No declaration, just use!

• class Counter:
• def __init__(self):
• self.value = 0
• def step(self):
• self.value += 1
• def current(self):
• return self.value

• # Testing the class definition:
• c = Counter()
• print "initial value", c.current()
• c.step()
• print "after one step", c.current()
• c.nonExistentMethod()

Output:
initial value 0
after one step 1
AttributeError Counter instance
has no attribute
'nonExistentMethod'

Simple Counter class

Encapsulation

• Python does not enforce encapsulation
– No equivalent of protected or private
– Anyone can happily execute

• obj.value = "abc"

• Generally a bad idea
• Remember: the things that make it easy

to write code quickly in Python make it
harder to maintain.

Inheritance

• Extend a parent class to create a child class
– put parent’s name in parentheses after child’s

• Must invoke parent’s constructor explicitly
– Unlike Java, it can be called like any other method

– from counter import Counter
– class Stepper(Counter):
– def __init__(self):
– Counter.__init__(self)
– def reset(self):
– self.value = 0

Example: overriding Counter

• Methods defined in child take
precedence over those defined in parent

Output:
Ctr (parent) 0 : 1
Ctr (parent) 1 : 2
Incrnter (child) 0 : 3
Incrnter (child) 1 : 6

Example: overriding Counter
• class Incrementer(Counter):
• def __init__(self, increment=1):
• Counter.__init__(self)
• self.increment = increment
• def step(self):
• self.value += self.increment

• # Test the class:
• obj = Counter()
• for i in range(2):
• obj.step()
• print "Counter (parent) ", i, ":",obj.current()
• obj = Incrementer(3)
• for i in range(2):
• obj.step()
• print "Incrementer (child) ", i, ":",obj.current()

Example: __add__
• Specially-named methods associated with every

arithmetic operator
– __add__ for +
– __mul__ for *
– If x is an object, x+2 is really x.__add__(2)

• Operators also have right-hand methods
– E.g. __radd__, __rmul__
– So 2+x is x.__radd__(2)

• Execution order for a+b is:
– If a has a method __add__, call a.__add__(b)
– If b has a method __radd__, call b.__add__(a)
– Else use Python’s built-in default

Example: __add__
• # modInt: only has values in the range 0..base-1
• class modInt:
• def __init__(self, base):
• self.base = base
• self.value = 0
• def __add__(self, other):
• self.value += other
• self.value %= self.base
• return self
• def val(self):
• return self.value

• a = modInt(3)
• for i in range(5):
• a = a + 1
• print a.val(),
• 1 2 0 1 2

Convert to integer
(int)

__int__(self)

Length (len)__len__(self)

Membership test (in)__contains__(self, item)

Indexing([])__getitem__(self, index)

Convert to string__str__(self)

Some other __special__ methods

Python and Java: differences
• Java:

– each file is a class

– execution starts with the main method of the class that is
loaded first

• Python:
– no need for classes in a file

– execution starts with the first executable statement in a file

– The execution of a class indentation block is storing the set
of statements that define the class

– Similarly, a def indentation block inside a class stores the
definition of a method

Creating and loading modules
• Any Python file can be loaded as a module

using import module
– File called xyz.py becomes module xyz

• Statements are executed as module loads
– Libraries typically just define constants and

functions
• Module contents referred to as

module.content
– E.g. sys.argv

• Can also use
• from module import name1, name2
• from module import *

• # stuff.py
• value = 123
• def printVersion():
• print "Stuff Version 2.2 "

• # loader.py
• import stuff
• print stuff.value
• stuff.printVersion()

• $ python stuff.py
• $ python loader.py
• 123
• Stuff Version 2.2

Module: example

Python Sequences

• List: a mutable sequence of objects
• mutable: can be changed
• sequence: can be indexed (start at 0)
• Same idea as the List interface in Java
• A Python list is a heterogeneous collection

– This is a fancy (but quick) way of saying that
its contents need not all be the same type: a list
can contain just about anything

Lists

• Elements are inside square brackets separated by
commas:
– lst = [1, 'Fred', 2, [], '999']

• List elements can be referred to by index:
– print lst[0], lst[3]
– print lst[5]

• 1 []
• IndexError: list index out of range

Syntax

• Modify lists by assigning to their elements
• Built-in function len() returns length of sequence

– x = ['a', 'b', 'c', 'd']
– i = 0
– while i < len(x):
– x[i] = i
– i += 1
– print x

– [0, 1, 2, 3]

Updating lists

• Lists of lists of lists of …
• Literals: [[1, 2], [3, 4]]
• Index from the outside in

– x = [[13, 17, 19], [23, 29]]
– print x[1]
– print x[0][1:3]

– [23, 29]
– [17, 19]

Nesting lists

• Nested lists are objects in their own right
• Outer list points to inner list

a b c d

x

y

x = [["a", "b"], ["c", "d"]]
y = x[0]
y[0] = 123
print y
print x

[123, “b”]
[[123, “b”], [“c”, “d”]]

Indexing hands back actual value

• Adding lists concatenates them
• You can multiply a list by an integer (recall

multiplying the string "ho" by 3)
– x = ["a", "b"] + ["c", "d"]
– y = 2 * x
– print x
– print y
– ['a', 'b', 'c', 'd']
– ['a', 'b', 'c', 'd', 'a', 'b', 'c', 'd']

Adding lists

• An immutable sequence of characters
• No separate character type
• Immutable: cannot be modified in place

– Safety
– Efficiency

Strings

• element = "boron"
• i = 0
• while i < len(element):
• print element[i]
• i += 1
• b
• o
• r
• o
• n

String indexing

Convert all letters to upper case.s.upper()

Replace occurrences of old with new;
limit is optional.

s.replace(old, new, limit)

Return index of first occurrence of pat, or
-1; start and end optional.

s.find(pat, start, end)

Count occurrences of pat; start and end
optional.

s.count(pat, start, end)

Remove trailing (right-hand) white
space.

s.rstrip()

Remove leading and trailing white
space.

s.strip()

Convert all letters to lower case.s.lower()

Capitalize the first letter.s.capitalize()

Strings are objects
(Yes, it does look a lot like Java, doesn't it?)

String methods

• Negative indices count backward from the end of the string
– x[-1] is the last character
– x[-2] is the second-last character

• Example:
– val = "carbon"
– print val[-2], val[-4], val[-6]

– o r c

Negative string indices

• Python sequence indices allow manipulations that
we don't have in Java

• Negative indices
– Negative indices count backward from the end of the

string or other sequence:
• Indexed just like strings

• x = ["a", 2, "bcd"]
• print x[0], x[-1], x[1:-2]

• a bcd []

Negative list indices, and a slice

• Python’s for loop works like Java's new for loop
– for item in collection

– sets item to each element of collection in turn

– for c in "lead":
• print "[" + c + "] ",

– print
– [l] [e] [a] [d]

For loops

• End loop prematurely using break
– only exits one level of loop

• Use continue to skip immediately to the next
iteration of the loop

• (Java and Python inherited these from C)
– for element in aVeryLongList:

• if element < 0:
– break

• print element

Breaking and continuing

• x in c is True if the value x is in the collection c
– Works on all collections
– Uses linear search on sequences

– vowels = "aeiou"
– for v in vowels:

• if v in "uranium":
– print v

a
i
u

Membership

Python Dictionaries and
Functions

• Another name for maps
– Also called hashes and associative arrays

• Built into the language
– Handy to be able to just write them

Dictionaries

• Create by putting key/value pairs inside {}
• birthdays = {"Newton":1642,

"Darwin":1809}
• Empty dictionary written as {}
• Index using []

– print birthdays["Darwin"]
– 1809

Creating and indexing

• Can only access keys that are present
– birthdays = {"Newton":1642,"Darwin":1809}
– print birthdays["Turing"]
– KeyError: Turing

• Test for presence of key using k in d
– if "Turing" in birthdays:

• print birthdays["Turing"]
– else:

• print "Who?"
– Who?

Access

Getting Help

• The pydoc module can be used to get information about
objects, functions, etc.
>>> from pydoc import help

>>> help(re)

• pydoc can also be used from the command line, to provide
manpage-like documentaiton for anything in Python:
% pydoc re

• dir() lists all operations and variables contained in an
object (list, string, etc):
>>> dir(re)

[‘DOTALL’, ‘I’, …, ‘split’, ‘sub’, ‘subn’, ‘template’]

	CSC207H: Software Design�Lecture 4
	Python: functions & classes
	Functions
	Classes
	An Example Class
	Using the example class
	Why’s the self?
	Why’s the self?
	Why’s the self?
	Creating a class in Python
	Methods in Python
	Creating a class in Python
	Simple Counter class
	Encapsulation
	Inheritance
	Example: overriding Counter
	Example: overriding Counter
	Example: __add__
	Example: __add__
	Some other __special__ methods
	Python and Java: differences
	Creating and loading modules
	Module: example
	Python Sequences
	Lists
	Syntax
	Updating lists
	Nesting lists
	Indexing hands back actual value
	Adding lists
	Strings
	String indexing
	String methods
	Negative string indices
	Negative list indices, and a slice
	For loops
	Breaking and continuing
	Membership
	Python Dictionaries and Functions
	Dictionaries
	Creating and indexing
	Access
	Getting Help

