
Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet.utoronto.ca/20075/csc207h1y/

Office: BA 4261
Office hours: R 5-7

Acknowledgement: These slides are based on material by Prof. Karen Reid

CSC207H: Software Design
Lecture 5

Tools in a Software House

 Programming Languages
 Scripting Languages
• Integrated Development Environment (IDE) App
• Profiling Tools
 Version Control App (e.g. cvs)
 Quality Assurance Framework (e.g. junit)
→ Software Build Management Framework
• Requirements/Feature Tracking App
• Variance Tracking App
• Architecture Tools

Make

How do you rebuild a program?

• javac A.java
• But what if you have many source files?

– javac *.java doesn't work with sub-directories
– And will be very (very) slow for large programs

• And what if some rely on others?
– Suppose Space.java uses Point.java
– Change Point.java
– Forget to compile it
– Compile and run Space.java
– oops

• Anything worth repeating is worth automating
• Computers are good at repetitive tasks, so make

the computer do it
• Most widely used tool for this is called Make

– Invented in 1975 by Stuart Feldman when he was a
summer student at Bell Labs

• Make's role:
– Figure out what has changed
– Work out what is affected by those changes
– Execute commands to bring things up to date (e.g. by

recompiling)

Automate(!)

Hello make

• Put program in Hello.java
• Put the following into a file called

hello.mk:
• Hello.class : Hello.java
• javac Hello.java

– Note: that indentation must be a tab

Running make

• Run make -f hello.mk
– Make sees that Hello.class depends on

Hello.java
– But Hello.class doesn't exist, so Hello.java is

compiled
• Run make -f hello.mk again

– Nothing happens
– Hello.class is already up to date

Terminology

• May be many prerequisites
• Rule may have many actions (one per line)

Hello.class : Hello.java
javac Hello.java

Rule

Target Prerequisite(s)

Action(s)

How it works

• Make looks at when the target and its prerequisites
were last modified
– It assumes targets are files and checks the dates on the

files
• Make does nothing …

– If the target exists, and
– Is more recent than all its prerequisites

• Make executes the actions …
– If the target doesn't exist, or
– If any prerequisite is more recent than the target

Multiple targets

• # double.mk
• Left.class : Left.java
• javac Left.java
• Right.class : Right.java
• javac Right.java
• Run make -f double.mk

– Only Left.java is compiled
– Because the first target in the file is the default

• Run this to build Right.class:
– make -f double.mk Right.class

Phony targets

• # all.mk
• all : Left.class Right.class
• Left.class : Left.java
• javac Left.java
• Right.class : Right.java
• javac Right.java
• all is a “phony target”

– No file called all
– Never up to date

• make -f all.mk compiles both Java files

Multiple dependencies
• Having targets depend on other targets forces

make to do things in a certain order
– TestSpace.class : TestSpace.java Space.class
– javac TestSpace.java
– Space.class : Space.java Point.class
– javac Space.java
– Point.class : Point.java
– javac Point.java

Visualizing dependencies

TestSpace.class

Point.classSpace.java

TestSpace.java Space.class

Point.java

Avoiding redundancy

• Often want to set options when compiling
– -classpath to include libraries
– -d to specify output directory
– -source 1.5 to specify Java language version

• Anything repeated in two or more places will
eventually be wrong in at least one
– Define variables (usually called "macros" in Make)
– Warning: syntax is a bit tricky

Macro Example

• TestSpace.class : TestSpace.java Space.class
• ${JC} TestSpace.java

• Space.class : Space.java Point.class
• ${JC} Space.java

• Point.class : Point.java
• ${JC} Point.java

JC = javac -classpath ".:/usr/jar/junit.jar" -source 1.4

Automatic variables

• Make defines variables to represent parts of
rules

$@ The target

$< The first prerequisite

$? All out-of-date prerequisites

$^ All prerequisites

Automatic variable example
• JC = javac -source 1.4
• TestSpace.class : TestSpace.java Space.class
• @echo "Building" $@
• ${JC} $<
• Space.class : Space.java Point.class
• @echo "Building" $@
• ${JC} $<
• Point.class : Point.java
• @echo "Building" $@
• ${JC} $<

Huh?

• @echo "Building" $@

• What is echo?
– A program to print to stdout

• What is @?
– Don’t print the action, just do it

Pattern rules: smarter way to
write a make file

• Most files are compiled the same way
– So write a pattern rule for the general case
– %.class : %.java
– ${JC} $<
– Use % to mark the stem of the file's name
– Like using * in commands in DOS or Unix

• Accumulate extra prerequisites by giving rules
without actions
– E.g. Space.class : Point.class

Analysis

• Pro
– Simple things are simple to do...
– ...and to read

• Con
– The syntax is unpleasant
– Complex things are difficult to read ...
– ... and even more difficult to debug
– Not really very portable

• Uses native shell to execute commands
– Do you use del or rm to delete files?

Example
• JR = java -enableassertions

• all : run

• run : Words.class in1.txt
• ${JR} Words in1.txt

• test : Words.class in1.txt out1.txt
• ${JR} Words in1.txt | diff - out1.txt

• clean :
• @rm -f *~ *.class

• %.class : %.java
• javac -source 1.4 $<

• COMPILE_JAVA = javac -classpath ${CSC207PATH} -source 1.4
• RUN_JAVA = java -classpath ${CSC207PATH} -enableassertions

• test: MorseTests.class
• ${RUN_JAVA} MorseTests

• MorseTests.class: \
• MorseCoder.class DuplicateCodeException.class \
• UnassignedSymbolException.class InvalidCodeException.class

• MorseCoder.class: \
• DuplicateCodeException.class \
• UnassignedSymbolException.class \
• InvalidCodeException.class

• clean :
• @rm -f *~ *.class *.pyc

• %.class : %.java
• @${COMPILE_JAVA} $<

Tools in a Software House

 Programming Languages
 Scripting Languages
• Integrated Development Environment (IDE) App
• Profiling Tools
 Version Control App (e.g. cvs)
 Quality Assurance Framework (e.g. junit)
 Software Build Management Framework (e.g. make)
• Requirements/Feature Tracking App
• Variance Tracking App
• Architecture Tools

Regular Expressions

Regular Expressions

• A mini-tool supported by all serious
Programming/scripting languages

• Can’t live without!

Motivation

Motivation

Motivation: it’s all about
searching in text

• Java
• Java and language
• “Java language”
• Java and language and programming
• Java and language or programming
• Java but not Indonesia

Regular Expression Matcher

Regular
Expression
Pattern

Text
to Search
(aka document)

True/False
Found-it/
didn’t find it

Simple RE Patterns
Pattern Explanation Matches Doesn’t

Match
a either a or not a! a b, c, d, X
ab either ab or not ab! ab abc,a,b

a* * is for zero or
more

empty-string,
a,aa

b, bb

b+ + is for one or more b, bb ac, aa
b?c One or zero c, bc abc
[abc] one from a set a,b, c ab, bc
[a-c] Abbreviation a, b, c ab, bc
[abc]* Combination empty-string,

acbccb, bb,ca
abcd

[abc]+ Combination acbccb, bb,ca empty-string

Anchoring
• Force the position of match

– ^ matches the beginning of the line
– $ matches the end
– Neither consumes any characters.

pattern text result
b+ abbc Matches
^b+ abbc Fails (no b at start)
^b+ bbc Matches
b+$ cb Matches
^a*$ aabaa Fails (not all a's)

Escaping

• Match actual ^ and $ using escape sequences
\^ and \$

• Match actual + and * using escape sequences
\+ *

• Be careful with back slashes
• Use escapes for other characters:

– \t is a tab character
– \n is a newline

Character sets

• Use escape sequences for common character
sets

• Note the notation [^abc] means “anything not
in the set”

\d Digits [0-9]
\w Word [a-zA-Z0-9_]
\s Space [\t\n\r]
. Anything except end of line [^\n]

RE Patterns: more high-level..

Patterns: Matches Doesn’t Match

a a b

ab ab aa

a | b 'a', 'b' ab

ab|cd 'ab', 'cd', ad, aab

a(bc|de)f 'abcf', 'adef' af

Compiling

• Regular expression library compiles
patterns into more concise form for
matching

• Can improve performance by doing this
once, and re-using the compiled pattern

Regular expressions in Java
• The java.util.regex package contains:

– Pattern: a compiled regular expression
– Matcher: the result of a match

• public String matchMiddle(String data) {
• String result = null;
• Pattern p = Pattern.compile("a(b|c)d");
• Matcher m = p.matcher(data);
• if (m.matches()) {
• result = m.group(1);
• }
• return result;
• }

How to use in Python

• Import the re module
• Use re.search(pattern, text)
• import sys, re
• pat = sys.argv[1]
• for text in sys.argv[2:]:
• if re.search(pat, text):
• result = "FOUND"
• else:
• result = "NOT FOUND"
• print pat, text, result
• $ testMatch "a[bc]*" b ab accb add

a[bc]* b NOT FOUND
a[bc]* ab FOUND
a[bc]* accb FOUND
a[bc]* add FOUND

Match Objects

• Results of re.search() is a match object
– mo.group() returns string that matched
– mo.start() and mo.end() are the match's location

• mo = re.search("b+" , "abbcb")
• print mo.group(), mo.start(), mo.end()

• bb 1 3

Python: functions & classes

Class members (new…)

• Variables defined directly in the class belong to
the class
– Not related to any self instance
– Like static in Java

• Nothing equivalent for methods
– Concept is easy
– Coming up with a simple syntax has proven difficult
– We'll see later that it is possible to have methods that

are independent of classes: functions

Example

• A class variable:
• class Tracker:
• numCreated = 0
• def __init__(self):
• Tracker.numCreated += 1

• t1 = Tracker()
• t2 = Tracker()
• print Tracker.numCreated

• Output: 2

Creating and loading modules
• Any Python file can be loaded as a module

using import module
– File called xyz.py becomes module xyz

• Statements are executed as module loads
– Libraries typically just define constants and

functions
• Module contents referred to as

module.content
– E.g. sys.argv

• Can also use
• from module import name1, name2
• from module import *

• # stuff.py
• value = 123
• def printVersion():
• print "Stuff Version 2.2 "

• # loader.py
• import stuff
• print stuff.value
• stuff.printVersion()

• $ python stuff.py
• $ python loader.py
• 123
• Stuff Version 2.2

Module: example

Modules: loading versus running

• Special variable __name__ is module's name
– Set to "__main__" when run from the command line
– Set to the module's name when loaded by something

else

• Often used to include self-tests in module
– Tests use assert when module run directly

Module: self-test
• class C:
• def double(self,val):
• return val * 2

• if __name__ == '__main__':
• print "testing C.double"
• c = C()
• assert c.double(0) == 0
• assert c.double('a') == 'aa'
• assert c.double([1]) == [1, 1]
• print "tests passed"

Python Sequences

• An immutable sequence of characters
• No separate character type
• Immutable: cannot be modified in place

– Safety
– Efficiency

Strings

• element = "boron"
• i = 0
• while i < len(element):
• print element[i]
• i += 1
• b
• o
• r
• o
• n

String indexing

• Negative indices count backward from the end of the string
– x[-1] is the last character
– x[-2] is the second-last character

• Example:
– val = "carbon"
– print val[-2], val[-4], val[-6]

– o r c

Negative string indices

Slicing

• a[start:end] is the elements of a from start up to
(but not including) end
– Think of the loop for (i = 0; i < n; i++)

• val = "helium"
• print val[1:3], val[:2], val[4:]
• print val[-1:1]

• el he um
• # the empty string

Bounds
• Out-of-range slice indices treated as though they ended at

the end of the range
• Single item access: bounds always checked; out-of-bounds

index results in an error:
– val = "helium"
– print val[1:22]
– x = val[22]

– elium
– IndexError: string index out of range

• A slice is a new list
– Not an alias for subsection of existing list

– x = ["a", "b", "c", "d"]
– y = x[0:2]
– y[0] = 123
– print y
– print x

– [123, "b"]
– ["a", "b", "c", "d"]

Slicing creates a new object

• Splice: to add a piece (possibly in the middle) to a
piece of tape or string

• Assigning to a slice splices the lists
– Replace the (possibly empty) section of list with a

(possibly empty) list

• x = ["a", "b", "c", "d"]
• x[1:1] = ["x", "y", "z"]
• print x

• ["a", "x", "y", "z", "b", "c", "d"]

Splicing

More on splicing

• Inserted object (spliced in) must be a list
– x = ["a", "b", "c"]
– x[1:2] = "z"
– TypeError: must assign list (not ‘str’) to slice

• Splicing in the empty list removes elements
– x = ["a", "b", "c", "d"]
– x[1:3] = []
– print x
– ["a", "d"]

Python Functions

• Function arguments always copied
– Means structures are aliased
– Just as in Java

• def mutate(x, y):
• x = 0
• y[0] = 0
• a = 1
• b = [1, 1, 1]
• mutate(a, b)
• print a, b # 1, [0, 1, 1]

More on functions: memory

• Can provide defaults for arguments
• Arguments without defaults must come first

• def withTax(val, percent=14):
• return val * (1.0 + percent/100.0)
• print withTax(10.00) # default
• print withTax(10.00, 6) # explicit
• 11.4
• 10.6

Default argument values

• Can pass arguments in any order using
names
• def show(first, second):
• print first, second
• show(1, 2)
• show(second=9, first=0)
• 1 2
• 0 9

Named arguments

	CSC207H: Software Design�Lecture 5
	Tools in a Software House
	Make
	How do you rebuild a program?
	Automate(!)
	Hello make
	Running make
	Terminology
	How it works
	Multiple targets
	Phony targets
	Multiple dependencies
	Visualizing dependencies
	Avoiding redundancy
	Macro Example
	Automatic variables
	Automatic variable example
	Huh?
	Pattern rules: smarter way to write a make file
	Analysis
	Example
	Slide Number 22
	Tools in a Software House
	Regular Expressions
	Regular Expressions
	Motivation
	Motivation
	Motivation: it’s all about searching in text
	Regular Expression Matcher
	Simple RE Patterns
	Anchoring
	Escaping
	Character sets
	RE Patterns: more high-level..
	Compiling
	Regular expressions in Java
	How to use in Python
	Match Objects
	Python: functions & classes
	Class members (new…)
	Example
	Creating and loading modules
	Module: example
	Modules: loading versus running
	Module: self-test
	Python Sequences
	Strings
	String indexing
	Negative string indices
	Slicing
	Bounds
	Slicing creates a new object
	Splicing
	More on splicing
	Python Functions
	More on functions: memory
	Default argument values
	Named arguments

