
Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet.utoronto.ca/20075/csc207h1y/

Office: BA 4261
Office hours: R 5-7

Acknowledgement: These slides are based on material by Prof. Karen Reid

CSC207H: Software Design
Lecture 6

Software house: what happens inside?

Understand the requirements

Design the software

Write the program

Test the program

Write Documentation

Package/Sell/Market

How to produce a design?

• Identify classes

• Identify relations between classes

How to identify a class

• nouns → class

• verbs → methods

• adjectives → attribute/member-variables

How to identify relations ?

• Owns/has it?

• Uses it?

• Is type of ?

How good is a class definition?
• Completeness

• class should captures all meaningful characteristics of an
abstraction

• Sufficiency
• Class provides enough characteristics of an abstraction to allow

meaningful and efficient interaction

• Coupling
• If an individual class is hard to understand, correct or change

without referring to other classes, it said to be strongly coupled
to another class, which is BAAAAD....

How good is a class definition?

• Cohesion
• Class methods work together to provide well-defined behaviour,

no unrelated elements or "coincidental cohesion"

• Primitiveness
• Class should only provide primitive operations (clean+tidy or

KISS)

Design Example

How to represent a design?

• We need a standard notation

• Unified Modelling Language (UML)

UML

• Unified Modeling Language
– A way to draw information about program design

• The pictures we show here come from
http://www.dofactory.com/Patterns/Patterns.aspx

UML: class diagram
• Types

– Class
– Interface

• What is a valid class?
– Type
– Propertiers
– Methods
– Visibility (public, protected, private)

UML: class diagram - relations
• Association

• Aggregation
– is a "part of" relationship
– Lifetime responsibility
– Contains-a

• Composition
– No lifetime responsibility
– Has-a

UML: class diagram - relations
• Association

• Aggregation
– is a "part of" relationship
– Lifetime responsibility
– Contains-a

• Composition
– No lifetime responsibility
– Has-a

Car

WheelCar

Radio

UML: class diagram - relations
• Inheritance

– Why?
– Is-A relationship & exchangeable types
– Types of inheritance

• Single inheritance vs. multiple Inheritance
• Single level vs. multi-level

– Examples
• Apple is a fruit
• Door & Window?
• What about manager, secretary, programmer & executive
classes?

UML: class diagram - relations
• Inheritance

– Why?
– Is-A relationship & exchangeable types
– Types of inheritance

• Single inheritance vs. multiple Inheritance
• Single level vs. multi-level

– Examples
• Apple is a fruit
• Door & Window?
• What about manager, secretary, programmer & executive
classes?

Construct Description Syntax

class a description of a set of objects
that share the same attributes,
operations, methods, relationships
and semantics.

interface a named set of operations that
characterize the behavior of an
element.

component a modular, replaceable and
significant part of a system that
packages implementation and
exposes a set of interfaces.

node a run-time physical object that
represents a computational
resource.

«interface»

UML Notation

Construct Description Syntax

association a relationship between two or more
classifiers that involves connections
among their instances.

aggregation A special form of association that
specifies a whole-part relationship
between the aggregate (whole) and
the component part.

generalization a taxonomic relationship between a
more general and a more specific
element.

dependency a relationship between two modeling
elements, in which a change to one
modeling element (the independent
element) will affect the other modeling
element (the dependent element).

UML Notation

Construct Description Syntax

realization a relationship between a specification
and its implementation.

UML Notation

Tools in a Software House

 Programming Languages
 Scripting Languages
• Integrated Development Environment (IDE) App
• Profiling Tools
 Version Control App
 Quality Assurance Framework
 Software Build Management Framework
• Requirements/Feature Tracking App
• Variance Tracking App
→ Architecture Tools

Design & Architecture Tool

• Violet UML modelling app
http://horstmann.com/violet/

Design Patterns

What is a Design Pattern
Each pattern describes a problem which occurs
over and over again in our environment,

and then describes the core of the solution to that problem,

in such a way that you can use this solution
a million times over,

without ever doing it the same way twice“

Elements of Design Patterns
• Pattern Name

– Increases design vocabulary, higher level of abstraction

• Problem
– When to apply the pattern
– Problem and context, conditions for applicability of pattern

• Solution
– Relationships, responsibilities, and collaborations of design elements
– Not any concrete design or implementation, rather a template

• Consequences
– Results and trade-offs of applying the pattern
– Space and time trade-offs, reusability, extensibility, portability

What is a Design Pattern (II)
• Description of communicating objects and

classes that are customized to solve a
general design problem in a particular
context.

• Each pattern focuses in a particular object-
oriented design problem or issue

• Patterns describe the shape of code rather
than the details

Design Pattern Space
Creational Structural Behavioral
Factory Method
Abstract Factory
Builder
Prototype
Singleton

Adapter
Bridge
Composite
Decorator
Flyweight
Facade
Proxy

Interpreter
Template Method
Chain of
Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Pattern: Command

objects that represent actions

Common UI commands
• it is common in a GUI to have several ways to

activate the same behavior
– example: toolbar "Cut" button and "Edit / Cut" menu
– this is good ; it makes the program flexible for the user
– we'd like to make sure the code implementing these

common commands is not duplicated

Command pattern

• Command: an object that represents an action
– sometimes called a "functor" to represent an object

whose sole goal is to encapsulate one function

Command pattern - example

Pattern: Singleton

At max One Instance of a class!

Singleton Pattern

• Instead the class itself is made responsible for keeping track of its instance.
It can thus ensure that no more than one instance is created. This is the
singleton pattern.

• Used to ensure that a class has only one instance. For example, one
printer spooler object, one file system, one window manager, etc.

Singleton example code
public class MySingletonClass {

private static MySingletonClass instance
= new MySingletonClass();

public static MySingletonClass getInstance()
{

return instance;
}

/** There can be only one. */
private MySingletonClass() {}

}

Pattern: Observer

Observer Pattern

A=10%
B=40%
C=30%
D=20%

Data Source (file,
website… etc)

A

B
C

D

A DCB

Relative Percentages

Y 10 40 30 20

X 15 35 35 15

Z 10 40 30 20

A B C D

Change notification

Observer Pattern

Subject

attach (Observer)

detach (Observer)

Notify ()

Observer

Update()

Concrete Observer

Update()

observerState

Concrete Subject

GetState()

SetState()

subjectState

observers

subject

For all x in observers{
x Update(); }

observerState=
subject getState();

Observer Pattern
• Need to separate presentational aspects with the data, i.e.

separate views and data.

• Classes defining application data and presentation can be
reused.

• Change in one view automatically reflected in other views.
Also, change in the application data is reflected in all views.

• Defines one-to-many dependency amongst objects so that
when one object changes its state, all its dependents are
notified.

Observer Pattern
• GUI programming example

Pattern: Template Method

What’s Wrong With This?
• public class PizzaMaker {
• public void cookPizzas(List pizzas) {
• for (int i=0; i<pizzas.size(); ++i) {
• Object pizza = pizzas.get(i);
• if (pizza instanceof ThinCrustPizza) {
• ((ThinCrustPizza)pizza).cookInWoodFireOven();
• }
• else if (pizza instanceof PanPizza) {
• ((PanPizza)pizza).cookInGreasyPan();
• }
• else {
•
• }
• }
• }
• }

The Open-Closed Principle

• Classes should be open for extension, but
closed for modification
– I.e., you should be able to extend a system

without modifying the existing code

• The type-switch in the example violates this
– Have to edit the code every time the marketing

department comes up with a new kind of pizza

Abstraction is the Solution

• Solve the problem by creating a Pizza
interface with a cook method
– Or an abstract base class whose cook method

must be overridden by every child

• Simple, right?

How Open Should You Be?
• public abstract class Pizza {
• public final void cook() {
• placeOnCookingSurface();
• placeInCookingDevice();
• int cookTime = getCookTime();
• letItCook(cookTime);
• removeFromCookingDevice();
• }
• protected abstract void placeOnCookingSurface();
• protected abstract void placeInCookingDevice();
• protected abstract int getCookTime();
• protected abstract void letItCook(int min);
• protected abstract void removeFromCookingDevice();
• }

Template Method Design Pattern

• The Template Method design pattern is used to set
up the skeleton of an algorithm
– Details then filled in by concrete subclasses

• But what if someone wants to do something you
didn’t anticipate?
– E.g., wants to add a PancakePizza that has to be

flipped over halfway through the cooking process

Override the Template Method?
• public final void cook() {
• placeOnCookingSurface();
• placeInCookingDevice();
• int cookTime = getCookTime();
• letItCook(cookTime/2);
• flip();
• letItCook(cookTime/2);
• removeFromCookingDevice();
• }

– But cook was final
– And it’s storing up trouble for the future

Squeeze It Somewhere Else?
• protected void removeFromCookingDevice() {
• flip();
• letItCook(cookTime);
• …remove from skillet…
• }

– removeFromCookingDevice shouldn’t be
doing other things
– Think about the documentation

– And once again, we’re storing up trouble for
the future

Leave Space for Future Growth?
• public final void cook() {
• beforePlacingOnCookingSurface();
• placeOnCookingSurface();
• beforePlacingInCookingDevice();
• placeInCookingDevice();
• beforeCooking();
• for (int i=0; i<getCookingPhases(); i++) {
• letItCook(getCookTime(i));
• afterCookingPhase(i);
• }
• beforeRemovingFromCookingDevice();
• removeFromCookingDevice();
• afterRemovingFromCookingDevice();
• }

Template Method Pattern

Design Patterns: discussion

• Not just about object-oriented design
– User interface patterns
– Business patterns
– Anti-patterns (things to avoid)

• Be careful, not every coding problem is a
design pattern

Serves Two Purposes
• Communication: a concise way for designers to

communicate with each other
– And argue out exactly what they mean
– Often without worrying about specific implementation details

• Education: gives them a way to communicate what they
know to newcomers
– Don't expect to connect them all to your own experience the first

time
– But keep them in mind as you work on other courses
– "Hey, I know how to do this!“

Are We Winning?

• You can’t tell if your designs are any good until
you can tell good from bad

• Presume you know how to tell good code from
bad
– Indentation, variable naming, documentation, unit tests,

etc.
– From here on in, you can only lose marks for doing it

badly

	CSC207H: Software Design�Lecture 6
	Software house: what happens inside?
	How to produce a design?
	How to identify a class
	How to identify relations ?
	How good is a class definition?
	How good is a class definition?
	Design Example
	How to represent a design?
	UML
	UML: class diagram
	UML: class diagram - relations
	UML: class diagram - relations
	UML: class diagram - relations
	UML: class diagram - relations
	UML Notation
	UML Notation
	UML Notation
	Tools in a Software House
	Design & Architecture Tool
	Design Patterns
	What is a Design Pattern
	Elements of Design Patterns
	What is a Design Pattern (II)
	Design Pattern Space
	Pattern: Command
	Common UI commands
	Command pattern
	Command pattern - example
	Pattern: Singleton
	Singleton Pattern
	Singleton example code
	Pattern: Observer
	Observer Pattern
	Observer Pattern
	Observer Pattern
	Observer Pattern
	Pattern: Template Method
	What’s Wrong With This?
	The Open-Closed Principle
	Abstraction is the Solution
	How Open Should You Be?
	Template Method Design Pattern
	Override the Template Method?
	Squeeze It Somewhere Else?
	Leave Space for Future Growth?
	Template Method Pattern
	Design Patterns: discussion
	Serves Two Purposes
	Are We Winning?

