
Wael Aboelsaadat

wael@cs.toronto.edu
http://ccnet.utoronto.ca/20075/csc207h1y/

Office: BA 4261
Office hours: R 5-7

Acknowledgement: These slides are based on material by Prof. Karen Reid

CSC207H: Software Design
Lecture 9

Programming/scripting languages
technologies

 Regular Expressions

XML

Parsers

Parsers

Regular
Expression
Pattern

Text
to Search
(aka document)

True/False
Found-it/
didn’t find it

XML

Schema True/False
Match/no-match

Graphs

Graph

• You have seen some specialized graphs
– Trees are graphs
– Linked lists are (simple) graphs

• Parsing uses graph & graph theory

• What is graph theory?

Graph

• A graph is a set of nodes connected by arcs
– Directed graph if the arcs have direction
– Undirected graph if the arcs simply show

connection

Graph

• A graph is a set of nodes connected by arcs
– Directed graph if the arcs have direction
– Undirected graph if the arcs simply show

connection

• Königsberg (in Germany) had seven
bridges. The townspeople wondered if
was possible to take a walk around the
town in such a way as to cross each of
the seven bridges exactly once.

Graph: Königsberg

• Königsberg (in Germany) had seven
bridges. The townspeople wondered if
was possible to take a walk around the
town in such a way as to cross each of
the seven bridges exactly once.

Graph: Königsberg

a

b

c

d

• How many colors do we need to color
a map so that every pair of states
with a border in common have
different colors?

Graph: map coloring

• How many colors do we need to color
a map so that every pair of states
with a border in common have
different colors?

Graph theory: map coloring

• http://en.wikipedia.org/wiki/Traveling_salesman_problem

Graph: traveling salesman problem

Example

A B

DC E

GF

Key Value
A {D, B, C}
B {D, E}
C {}

D {F}

E {F, G}
F {}
G {}

Graph Algorithms

• Crop up everywhere in computing
• Most are recursive
• Must handle circularity

• Common solution is to keep track of nodes
already visited using a set/stack

B

A
C

Stack??

• First in, last out (FILO)…

• How do you implement that?

Example: Reachability

• Can we get to E from A?

B

A C

ED

Example: Reachability

B

A C

ED

For each child of the src, check if dst is reachable from that
child

{}

src: A
seen:

Example: Reachability

B

A C

ED

{A}

src: A
seen:

src: B
seen:

Example: Reachability

B

A C

ED

{A,B}

src: A
seen:

src: B
seen:

src: C
seen:

Example: Reachability

B

A C

ED

{A,B,C}

src: A
seen:

src: B
seen:

src: C
seen:

C

D

B

A

Example: Reachability

B

A C

ED

{A}

src: A
seen:

src: D
seen:

Example: Reachability

B

A C

ED

{A,D}

src: A
seen:

src: D
seen:

src: E
seen:

Example: Reachability

B

A C

ED

{A,D,E}

src: A
seen:

src: D
seen:

src: E
seen:

Shortest Path

• What is the shortest path from A to E?

B

A C E

D

src: A
seen:
len: 0

{A}

Shortest Path

B

A C E

D

{A,B}

src: B
seen:
len: 1

src: C
seen:
len: 2

A

B

C

{A,B,C,E}

src: A
seen:
len: 0

{A}

Shortest Path

B

A C E

D

{A,B}

src: C
seen:
len: 1

src: E
seen:
len: 2

A

B

C

{A,C,E}

B

{A}

Shortest Path

B

A C E

D

{A,D}

src: A
seen:
len: 0

src: D
seen:
len: 1

Simple Graph Implementation

• Graphs are stored as maps
• Keys are the names of nodes
• Values are the set of nodes

– A node B is in the set of nodes for node A if
there is an arc from A to B

• class DirectedGraph {
• public DirectedGraph() {...}
• public Set getNodes() {...}
• public boolean hasNode(Object node) {...}
• public void addNode(Object node) {...}
• public void addNode(Object node, Collection arcs) {...}
• public void removeNode(Object node) {...}

• public Set getArcs(Object node) {...}
• public boolean hasArc(Object src, Object dst) {...}
• public void addArc(Object src, Object dst) {...}
• public void addArcs(Object src, Collection allDst) {...}
• public void removeArc(Object src, Object dst) {...}
• public String toString() {...}
• protected Map fNodes;
• }

Graphs

Design Choices

• What happens if we try to add a node that is
already present?
– Or duplicate an arc?
– Or remove a node or arc that doesn’t exist?

• Could throw an exception
– Means that users have to write code like

• if (not present) then add node

• Could just ignore operations that don’t make sense
– Results in late failures

Design Choices

• What happens if we try to add a node that is
already present?
– Or duplicate an arc?
– Or remove a node or arc that doesn’t exist?

• Could throw an exception
– Means that users have to write code like

• if (not present) then add node

• Could just ignore operations that don’t make sense
– Results in late failures

More Design Choices
• What should a graph return when asked for its

nodes?
– Return a map’s keys as a set

• What if it is asked for a node’s arcs?
– The set used to store the arcs?

• Efficient, but allows users to mess up data structure
– A copy of the set?

• Less efficient for large graphs with many arcs, but safer

• What if a user wants all arcs?
– Not directly available, but easy to construct

• A set or a list of two-element lists (arrays)?

More Design Choices
• What should a graph return when asked for its

nodes?
– Return a map’s keys as a set

• What if it is asked for a node’s arcs?
– The set used to store the arcs?

• Efficient, but allows users to mess up data structure
– A copy of the set?

• Less efficient for large graphs with many arcs, but safer

• What if a user wants all arcs?
– Not directly available, but easy to construct

• A set or a list of two-element lists (arrays)?

• public static boolean reachable(DirectedGraph graph,
• Object src, Object dst, Set seen) {
• // Are we there yet?
• if (src == dst) {
• return true;
• }
• // Try to get there indirectly
• Iterator ia = graph.getArcs(src).iterator();
• while (ia.hasNext()) {
• Object next = ia.next();
• if (!seen.contains(next)) {
• seen.add(next);
• if (reachable(graph, next, dst, seen)) {
• return true;
• }
• }
• }
• return false;
• }

Reachable method

• public static boolean reachable(DirectedGraph graph,
• Object src, Object dst, Set seen) {
• // Are we there yet?
• if (src == dst) {
• return true;
• }
• // Try to get there indirectly
• Iterator ia = graph.getArcs(src).iterator();
• while (ia.hasNext()) {
• Object next = ia.next();
• if (!seen.contains(next)) {
• seen.add(next);
• if (reachable(graph, next, dst, seen)) {
• return true;
• }
• }
• }
• return false;
• }

Reachable method

Parsing Text Files

How to build a build tool?

• Instructive to see how tools like Make are
constructed
– Good application for object-oriented design
– Shows how useful graph theory is
– Another example of reading input
– Helps you see that the tools you use are just like

the programs you write (just bigger)

Strategy

• Major parts
– reading build files
– executing rules

• Steps:
– requirements
– design
– implementation
– testing

Requirements

• Command-line tool, not GUI
• Read rules from a single input file

– Real Make allows files to include other files
• Ignore macros, pattern rules, special

variables, etc.
– None of these are especially difficult but we

will keep it simple to start with

Elements of a Makefile

• Blank lines

• Comments

• Rules consisting of:
– A head made up of a target and some

prerequisites (dependencies), and
– A body containing zero or more actions

Plan of Attack

• Build a placeholder Rule class
• A single target, a set of prerequisites, and a

list of actions
• Build a parser
• Go back and improve the Rule

representation

Notes

• Often write temporary placeholders (we call
these stubs), then replace them.

• Much easier to do if the system is modular
– If two pieces communicate through an

interface, they can be modified independently
– Modular systems are not just easier to maintain,

they are also easier to build

Design

Implementation: simple Rule class

• class Rule {
• /** Construct empty rule. */
• public Rule() {
• }

• // Target, pre-reqs, and actions.
• protected String fTarget;
• protected List fPrereqs;
• protected List fActions;
• }

Implementation: simple Parse class

• class Parse {
• /** Construct empty rule. */
• public Parse() {
• }

• public Rule[] parse(String strFileContents)
• }

Notes on Style

• Order of a class
– Static variables and methods
– Public methods
– Protected or private methods
– Member variables

• Use “fName” for fields
– Less error-prone than using nothing, or this.name
– What about Hungarian Notation?

• http://en.wikipedia.org/wiki/Hungarian_notation

Style
• Put common initialization in a protected method

• Declare members to be of most abstract types (e.g. List
instead of ArrayList)
– Makes it easy to change mind later

• Prefer protected to private
– Sooner or later, will want to override it ...
– ... or test it

• Everything is negotiable
– Consistency is more important than any detail of style

First Parser
• Parser class uses static methods

• Reads to the end of stream, creating rules
– Can handle standard input as well as files

• Restrict input
– No blank lines or comments
– One pre-requisite per rule
– One action per rule

• Rules for exploratory programming:
– Do it
– Do the simplest thing that could possibly work
– Build one to throw away

First Parser: code

State Machine Parser

• States (based on FSM)
– Initial, head only, head and body

• Classifiers
– head line, body line

• Handlers

Finite State Machine for our Parser

head &
body

head
only

initial

error

end
body

body

EOF

head

EOF
EOF

Finite State Machine for our Parser

Finite State Machine Parser: code

Comments and Blank Lines

head &
body

head
only

initial

error

end
body

body

EOF
head

head

EOF

comments/blank

comments/blank

comments/blank

	CSC207H: Software Design�Lecture 9
	Programming/scripting languages technologies
	Parsers
	Graphs
	Graph
	Graph
	Graph
	Graph: Königsberg
	Graph: Königsberg
	Graph: map coloring
	Graph theory: map coloring
	Graph: traveling salesman problem
	Example
	Graph Algorithms
	Stack??
	Example: Reachability
	Example: Reachability
	Example: Reachability
	Example: Reachability
	Example: Reachability
	Example: Reachability
	Example: Reachability
	Example: Reachability
	Shortest Path
	Shortest Path
	Shortest Path
	Shortest Path
	Simple Graph Implementation
	Graphs
	Design Choices
	Design Choices
	More Design Choices
	More Design Choices
	Slide Number 34
	Slide Number 35
	Parsing Text Files
	How to build a build tool?
	Strategy
	Requirements
	Elements of a Makefile
	Plan of Attack
	Notes
	Design
	Implementation: simple Rule class
	Implementation: simple Parse class
	Notes on Style
	Style
	First Parser
	First Parser: code
	State Machine Parser
	Finite State Machine for our Parser
	Finite State Machine for our Parser
	Finite State Machine Parser: code
	Comments and Blank Lines

