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Programming/scripting languages 
technologies

 Regular Expressions

XML

Parsers



Parsers
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to Search
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Found-it/
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Graphs



Graph

• You have seen some specialized graphs
– Trees are graphs
– Linked lists are (simple) graphs

• Parsing uses graph & graph theory

• What is graph theory?



Graph

• A graph is a set of nodes connected by arcs
– Directed graph if the arcs have direction
– Undirected graph if the arcs simply show 

connection
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• Königsberg (in Germany) had seven 
bridges. The townspeople wondered if 
was possible to take a walk around the 
town in such a way as to cross each of 
the seven bridges exactly once.

Graph: Königsberg
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• How many colors do we need to color 
a map so that every pair of states 
with a border in common have 
different colors?

Graph: map coloring



• How many colors do we need to color 
a map so that every pair of states 
with a border in common have 
different colors?

Graph theory: map coloring



• http://en.wikipedia.org/wiki/Traveling_salesman_problem

Graph: traveling salesman problem



Example

A B

DC E

GF

Key Value
A {D, B, C}
B {D, E}
C {}

D {F}

E {F, G}
F {}
G {}



Graph Algorithms

• Crop up everywhere in computing
• Most are recursive
• Must handle circularity

• Common solution is to keep track of nodes 
already visited using a set/stack

B

A
C



Stack??

• First in, last out (FILO)…

• How do you implement that?



Example: Reachability

• Can we get to E from A?

B

A C

ED



Example: Reachability

B

A C

ED

For each child of the src, check if dst is reachable from that 
child

{}

src: A
seen:
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Example: Reachability
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Shortest Path

• What is the shortest path from A to E?

B

A C E

D



src: A
seen:
len: 0

{A}

Shortest Path
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src: C
seen:
len: 2
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Simple Graph Implementation

• Graphs are stored as maps
• Keys are the names of nodes
• Values are the set of nodes

– A node B is in the set of nodes for node A if 
there is an arc from A to B



• class DirectedGraph {
• public         DirectedGraph() {...}
• public Set     getNodes() {...}
• public boolean hasNode(Object node) {...}
• public void    addNode(Object node) {...}
• public void    addNode(Object node, Collection arcs) {...}
• public void    removeNode(Object node) {...}

• public Set     getArcs(Object node) {...}
• public boolean hasArc(Object src, Object dst) {...}
• public void    addArc(Object src, Object dst) {...}
• public void    addArcs(Object src, Collection allDst) {...}
• public void    removeArc(Object src, Object dst) {...}
• public String  toString() {...}
• protected Map  fNodes;
• }

Graphs



Design Choices

• What happens if we try to add a node that is 
already present?
– Or duplicate an arc?
– Or remove a node or arc that doesn’t exist?

• Could throw an exception
– Means that users have to write code like

• if (not present) then add node

• Could just ignore operations that don’t make sense
– Results in late failures
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More Design Choices
• What should a graph return when asked for its 

nodes?
– Return a map’s keys as a set

• What if it is asked for a node’s arcs?
– The set used to store the arcs?

• Efficient, but allows users to mess up data structure
– A copy of the set?

• Less efficient for large graphs with many arcs, but safer

• What if a user wants all arcs?
– Not directly available, but easy to construct

• A set or a list of two-element lists (arrays)?
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• public static boolean reachable(DirectedGraph graph, 
• Object src, Object dst, Set seen) {
• // Are we there yet?
• if (src == dst) {
• return true;
• }
• // Try to get there indirectly
• Iterator ia = graph.getArcs(src).iterator();
• while (ia.hasNext()) {
• Object next = ia.next();
• if (!seen.contains(next)) {
• seen.add(next);
• if (reachable(graph, next, dst, seen)) {
• return true;
• }
• }
• }
• return false;
• }

Reachable method
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Parsing Text Files



How to build a build tool?

• Instructive to see how tools like Make are 
constructed
– Good application for object-oriented design
– Shows how useful graph theory is
– Another example of reading input
– Helps you see that the tools you use are just like 

the programs you write (just bigger)



Strategy

• Major parts
– reading build files
– executing rules

• Steps:
– requirements
– design
– implementation
– testing



Requirements

• Command-line tool, not GUI
• Read rules from a single input file

– Real Make allows files to include other files
• Ignore macros, pattern rules, special 

variables, etc.
– None of these are especially difficult but we 

will keep it simple to start with



Elements of a Makefile

• Blank lines

• Comments

• Rules consisting of:
– A head made up of a target and some 

prerequisites (dependencies), and
– A body containing zero or more actions



Plan of Attack

• Build a placeholder Rule class
• A single target, a set of prerequisites, and a 

list of actions
• Build a parser
• Go back and improve the Rule 

representation



Notes

• Often write temporary placeholders (we call 
these stubs), then replace them.

• Much easier to do if the system is modular
– If two pieces communicate through an 

interface, they can be modified independently
– Modular systems are not just easier to maintain, 

they are also easier to build



Design 



Implementation: simple Rule class

• class Rule {
• /** Construct empty rule. */
• public Rule() {
• }

• // Target, pre-reqs, and actions.
• protected String fTarget; 
• protected List   fPrereqs;  
• protected List   fActions;       
• }



Implementation: simple Parse class

• class Parse {
• /** Construct empty rule. */
• public Parse() {
• }

• public Rule[] parse(String strFileContents )
• }



Notes on Style

• Order of a class
– Static variables and methods
– Public methods
– Protected or private methods
– Member variables

• Use “fName” for fields
– Less error-prone than using nothing, or this.name
– What about Hungarian Notation?

• http://en.wikipedia.org/wiki/Hungarian_notation



Style
• Put common initialization in a protected method

• Declare members to be of most abstract types (e.g. List
instead of ArrayList)
– Makes it easy to change mind later

• Prefer protected to private
– Sooner or later, will want to override it ...
– ... or test it

• Everything is negotiable
– Consistency is more important than any detail of style



First Parser
• Parser class uses static methods

• Reads to the end of stream, creating rules
– Can handle standard input as well as files

• Restrict input
– No blank lines or comments
– One pre-requisite per rule
– One action per rule

• Rules for exploratory programming:
– Do it
– Do the simplest thing that could possibly work
– Build one to throw away



First Parser: code



State Machine Parser

• States (based on FSM)
– Initial, head only, head and body

• Classifiers 
– head line, body line

• Handlers



Finite State Machine for our Parser



head &
body

head
only

initial

error

end
body

body

EOF

head

EOF
EOF

Finite State Machine for our Parser



Finite State Machine Parser: code



Comments and Blank Lines

head &
body

head
only

initial

error

end
body

body

EOF
head

head

EOF

comments/blank

comments/blank

comments/blank
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