

ECE 244 Lab 1 Page 1 of 23

ECE 244 Programming Fundamentals

Lab Assignment #1: The ECF Development Environment

1 Objectives

The objectives of this assignment are multifold: to learn basic UNIX commands, to learn how
to submit your solutions to the autotester program, and to provide you with practice on the
edit-compile-run-debug cycle of C++ programs in a UNIX environment.

2 Problem Statement

In this lab you will first create a directory for ECE244 assignments in the file system under
your UNIX account on ECF. You will then copy a simple C++ program, compile it, check it for
correct output, edit the program, recompile and submit to the autotester. Second, you will use a
debugger called DDD to debug five programs. A step-by-step tutorial is given for debugging the
first three programs to get you familiar with the basic functions of the debugger. You debug the
other two programs on your own.

3 Background

3.1 Logging into ECF

Before you can gain access to the ECF computer system, you must have your login name and a
password to log onto the system. Your login name (or just login) is a 6-8 character string that
is used to identify you to the computer system. Your password is an 8 character string known
only to you and is used to provide security for your computer account. No one knows what
your password is except you, not even the ECF system! You must never share your password
with anyone.

Once you log in, you will likely be presented with some introductory messages and
announcements from ECF, and then you will get an xterm window. If you do not get the xterm
window you can start one by clicking on “Applications” then “System Tools”, and then
“Terminal”. The xterm window has the UNIX prompt: “pxxx.ecf%” (e.g., p120.ecf% or
p150.ecf %) indicating that the system is ready to accept your commands. In the remainder of
this document, we will use just “%” as the prompt and it will appear in front of all commands
you type, but of course you will not type it.

3.2 The UNIX File System

3.2.1 The File Structure

The UNIX file system is organized into a tree-like structure of directories. At the top of the
tree is the root directory of the system, designated by a “/”. Various system directories, named
“bin”, “local”, “lib”, “u”, etc are contained in the root directory. In turn, files and other
directories exist in each of these directories, as shown in Figure 1.

Your files and directories exist in the system under your home directory, which has the same
name as your login name (assumed to be ast for the remainder of this document). This is also
shown in Figure 1: your files are in the directory called ast, which exists in the directory
called 1T0, which in turn is in the directory called u that exists in /.

/

bin src lib u tmp var

1T0 0T9 0T8

ast

aps105 sort.cc ece244

Your home directory (also
named ~ and ~ast)

Your files &
directories

The root of the File System

a2.cpp assign2 assign1 a1.cpp

Figure 1: An example UNIX directory structure.

3.2.2 The Working Directory

When you are logged into the ECF system, you are always associated with one directory or
another. The directory you are currently associated with is called your working directory. When
you first login, your home directory is your working directory. You can then change your
working directory using the cd command (explained later). At any time, you can find out what
your working directory is using the print-working-directory command, pwd, as follows:

% pwd

The command will print the name of your current working directory to the screen.

ECE 244 Lab 1 Page 2 of 23

ECE 244 Lab 1 Page 3 of 23

3.2.3 File/Directory Locations

The location of a file or a directory is specified using a path through the tree. This path can be
full (or absolute) starting from the root of the tree “/”, or relative to the current directory, or to
some other directory. Thus, in Figure 1, the file a1.cpp can be specified in a number of ways,
assuming that your home directory is your working directory:

/u/1T0/ast/aps105/a1.cpp full or absolute

aps105/a1.cpp relative to the working directory

~ast/aps105/a1.cpp relative to the home directory of ast

~/aps105/a1.cpp relative to your home directory

Note how ~ast specifies the home directory of user “ast” and how “~” by itself specifies
your home directory.

UNIX also provides two short-hands: “.” refers to the working directory, and “..” refers to the
parent directory of the working directory. These short-hands are useful in specifying relative
paths. For example, in Figure 1, if the working directory is aps105, then the file a1.cpp can
also be specified as ./a1.cpp, and the file sort.cc can be specified as ../sort.cc.

3.2.4 Listing Contents of a Directory

To obtain a listing of the names of all of the files in a directory, you can use the ls command:

% ls

Thus, using ls when you first login will print a list of all the files in your home directory.

3.2.5 Creating a Directory

In order to keep your files better-organized, you should create directories to hold files relating
to various subjects, courses, etc. For example, to create a new directory, called newdir, in your
home directory, use the mkdir command at the prompt:

% mkdir newdir

Since newdir is contained in your home directory, newdir is referred to as a subdirectory of
your home directory, and your home directory is referred to as the parent directory of newdir.
Similarly in Figure 1, aps105 is the parent directory of the file a2.cpp while ece244 is a
subdirectory of the home directory ast.

3.2.6 Changing the Working Directory

To work within a directory, you must use the change-directory command, cd, to make it your
working directory. The cd command has the following syntax:

cd dirlocation

ECE 244 Lab 1 Page 4 of 23

where dirlocation is the location of the directory you wish to make your working directory,
specified using a path in the directory tree as described above. For example, in Figure 1, if your
home directory is the working directory, and you can make assign1 your working directory,
by typing:

% cd ece244/assign1

You may also accomplish the same thing by specifying the full path to the directory as follows:

% cd /u/1T0/ast/ece244/assign1

If your working directory is assign1, and you can make ece244 your working directory by
typing:

% cd ..

which takes you to the parent directory of your current directory; i.e., ece244.

Finally, you can always return to your home directory by typing:

% cd

with no directory location specified.

It is important to always know what your current working directory is (using the pwd
command, described earlier), and how to move to subdirectories of it, or to move to its parent
directory.

3.3 Moving, Copying and Deleting Files

Using UNIX commands, you can type commands to list your files, move, copy, delete, etc. For
example, the cp command is used to create a copy (duplicate) of a file. It has the following
syntax:

cp file1 file2

This takes a file named file1 and creates a new file called file2 that is an exact duplicate of
file1.

The mv command is used to move (or rename) a file, and has the following syntax:

mv file1 file2

This takes a file named file1 and creates a new file called file2 that is an exact duplicate of
file1. The original file1 is removed.

Finally, the rm command is used to delete (or remove) a file:

rm file

Be careful when using the rm command; files that you remove cannot be retrieved. Thus, it
pays to use the rm command with the “-i” option as follows:

ECE 244 Lab 1 Page 5 of 23

rm –i file

The command will prompt for confirmation before the file is deleted.

3.4 Protecting Your Files

Every UNIX file has an owner (and group) associated with it. You are the owner of all files and
directories in your home directory. As the owner you may choose to allow or deny others to
view your files. In order to protect your assignments from being copied by others, you should
use the chmod command to protect you files. When you create a new directory newdir, use the
chmod command as follows (assuming your working directory is the parent of newdir):

% chmod –R go-rwx newdir

This prevents others from reading or searching through newdir. You can use the command on
any existing directory as well to protect it and all the files contained in it.

3.5 Getting More Information on UNIX Commands

You can get more information on any UNIX command by using the man command (for manual
page). For example, type

% man ls

to get information on the ls command. As the information is displayed, --More-- appears at
the bottom of the screen. At this point, you can press the spacebar to display the next screen, or
press q to quit.

Indeed, if you wish to find out more about the man command, type:

% man man

3.5 Debuggers

A debugger is a tool that helps you find errors (i.e., “bugs”) in your programs. It does so by
allowing you to control the execution of a program. You can make the program stop when it
reaches a particular point in the code: this is called a breakpoint. While at a breakpoint, you can
examine the values of variables and inspect the state of the program. The source code of the
program is displayed in a window. You can resume execution from the breakpoint, possibly to
another breakpoint, or single-step one statement at a time in your program. You can also set
watches to view the values of variables you are interested in.

The use of a debugger can save you hours of frustration. While a debugger can never tell you
what a bug is, it can help you quickly determine where the bug is located in your code.
Combined with your knowledge of what the program should be doing, you can quickly locate
and fix your bug.

Learning to use a debugger does take some time. However, this is time well-spent. It certainly
beats debugging your code by staring at it for hours at a time, by randomly changing lines in
the code, or by inserting print statements all over the code.

ECE 244 Lab 1 Page 6 of 23

This lab is designed to help you learn how to use a debugger called Data Display Debugger
(DDD). It is actually a graphical front-end to a powerful debugger called the Gnu Debugger
(GDB). If you are familiar with another debugger, feel free to use it instead of DDD.

This lab assumes that you know how to use a text editor to edit your programs. Examples of
such editors include emacs, vi, and nedit.

4 Preparation

Please read the previous section on UNIX file system and commands. Also, please read the
Laboratory information handout and any material posted to the Lab section of the course’s web
site on the same topic. Finally, please familiarize yourself with the submitece244f,
exercise, and chksubmit commands. Full documentation of these commands can be found
at: http://www.ecf.utoronto.ca/~stumm/ece244.html.

It is vital that you go through all the steps of this assignment, even when you think it is too easy
to do. The assignment will prepare you for the process of checking and submitting your
assignment. Just as incentive, keep in mind that last year as many as 20% of the class received
a mark of 0 for an assignment, not because they did not work on it (indeed they put more than
40-50 hours of work), but because they failed to use the submit commands to properly submit
their assignments.

There is a tutorial on how to use the DDD debugger, as well as the manual of DDD, in the
“Labs” section of the course’s web. Read through the tutorial and the first few sections of the
manual before the lab. DO NOT PRINT THE DDD MANUAL! It is too long (220 pages!) and
is probably not useful to you at this stage.

5. Procedure

5.1 Directory preparation

Use your login and password to log onto the ECF system.

In your home directory, create a new directory for ECE244 (this course!) by typing the
following at the prompt:

% mkdir ece244

Make sure that the directory is protected by typing:

% chmod go-rwx ece244

Now use the ls command to see the new “ece244” directory in your list of files.

Change your working directory to ece244 using the following command:

cd ece244

http://www.ecf.utoronto.ca/%7Estumm/ece244.html

ECE 244 Lab 1 Page 7 of 23

If you type the ls commend now, you will get no output, since the directory is currently
empty; i.e., has no files in it.

Now create a directory called assign1 in ece244 and make it your working directory.

5.2 The “Hello, World!” Program

You will use a simple example program whose only purpose is to print the message “Hello,
world!” to the screen. An initial version of this program is provided; you simply have to copy
it into your working directory (ece244/assign1). You can do so by executing the following
command:

 % cp ~stumm/public/ece244/lab1_submit/hello.cpp .

This command copies the file called hello.cpp from the directory
“public/ece244/lab1_submit/” in the home directory of user “stumm” into your current
working directory.

Use the ls command to ensure that the file exists

Compile the program by executing the command:

 % g++ hello.cpp –o hello

This will create an executable called hello. You can run it with by typing:

 % ./hello

which runs the executable called hello in the working directory.

5.3 Testing the “Hello, World!” Program

The automarker program will test all code that you submit. It does so by compiling your
programs and then running them with various inputs, or test cases. Each time it runs your
program it compares the output to that of the reference solution. If your output matches the
reference output then your program passes the test case, otherwise it fails. In general this
works quite well – if your program does what it’s supposed to do, you will pass all the test
cases, and if it doesn’t then you will fail some of them. Unfortunately there are two things that
could go wrong if you’re not careful.

First, the automarker requires that your program have a very specific name. This name will
always be specified in the lab handout, and if your program’s name differs even slightly then
the automarker will not be able to run it. This will mean that you will fail every test case, even
if your program works! Fortunately, we have provided a program that double-checks that you
have named your program correctly. It is called exercise, and it has a subset of the test cases
that will be used by the automarker. It chooses one at random and uses it to test your program.
If your output does not match the expected output exercise will tell you. The exercise
command has the following syntax:

ECE 244 Lab 1 Page 8 of 23

~stumm/public/ece244/exercise assignment# program_name

Let’s assume that our example program should be named Hello. But, as things stand, an
executable called hello (note the lowercase “h”) is created when you compile it. If you didn’t
notice this and submitted the files as-is you would fail every test case. If you run exercise,
however, it would warn you of this problem:

% g++ hello.cpp -o hello
% ~stumm/public/ece244/exercise 1 ./hello

Error - exercise only supports the following executables: Hello

Quitting!

If exercise is run with an executable that does not match the name expected by the
automarker, it will print a message like the one above (note that the error messages may be
slightly different from the ones printed in this document). To fix the problem, copy
hello.cpp into another file Hello.cpp using the cp command, and re-compile:

% g++ Hello.cpp -o Hello

Now run exercise again:

% ~stumm/public/ece244/exercise 1 ./Hello

Running the following input on your program:

===

Your program produced the following output:
===
Hello world!

Expected to see the following output:
===
Hello, world!

Unacceptable output produced.

Note that exercise no longer prints an error message regarding the file name. It does,
however, print a different error message. This is an example of the second major pitfall of the
automarker: typos. Any difference from the expected output, no matter how minor, will cause
your program to fail a test case. Here the program omitted a comma in its output.

Now fix the problem in the example program. Edit Hello.cpp and add the missing comma
on line 5. The result should look like this:

cout << "Hello, world!\n";

ECE 244 Lab 1 Page 9 of 23

Now recompile and run exercise one more time:

% g++ Hello.cpp -o Hello
% ~stumm/public/ece244/exercise 1 ./Hello

Running the following input on your program:

===

Your program produced the following output:
===
Hello, world!

Expected to see the following output:
===
Hello, world!

Acceptable output produced.

This time exercise tells you that the output was correct. If, unlike this simple example, your
program outputs different things depending on the input, you should run exercise several
times. This will test your program against all the different test cases that are available to
exercise. You should use exercise for every assignment, but you should also remember
that passing all of its test cases does not guarantee a perfect mark – the automarker uses some
test cases that are not available to exercise. You should always perform additional testing.

6 Using the DDD Debugger

7.1 Part I – Your First DDD Session

Often, a C++ program will terminate execution because of a run-time error, giving a “bus
error” or a “Segmentation fault” error message, which is not very helpful. One of the most
common uses of a debugger is to determine where the error occurred and what caused it. In this
part of the assignment, you will use the DDD debugger and a sample program to learn how to
determine where such a run-time error occurred.

Use a browser to download the C++ program called list.cc from the “Labs” section of the
course’s web site. The program creates three nodes and links them in a linked list, as was
explained in class. Look at the program and study it.

Compile this program using Gnu’s C++ compiler (called g++) as follows:

 g++ list.cc –g –o list

The –g option tells the compiler to compile the program for debugging. This option is
required when compiling the program, or else you will not be able to use the debugger to
debug the program. The –o option tells the compiler to place the executable in the file called
list. Thus, the program may be executed by typing:
 ./list

The program ends with the error message: Segmentation fault.

ECE 244 Lab 1 Page 10 of 23

Start the debugger by typing:

ddd list

After a few seconds, DDD comes up. The initial DDD window is shown in the screenshot below.
The “Source Window” contains the source of list.cc. You can use the scroll bar to scroll
through the code.

The top menu bar contains a number of pull-down menu items that allow you to open, close,
and edit files, to add and remove views, and to execute commands. Under this top menu is a
menu bar with several icons on it. You can move you mouse over an icon and leave it there for
a short time to see a short description of what it does. The icons deal with text lookups
(searches), breakpoints, and data viewing. Some of these operations require that an argument be
given to the corresponding command. This can be done through the “Argument field” box to
the left of the icons. For example, to display the value of a variable, the name of the variable is
specified in the “Argument field”.

The “Command Tool” contains buttons that correspond to frequently used commands. The
buttons allow you to start and stop the execution of a program, single-step through the program,
as well as edit and recompile the program.

Underneath the “Source Window” is the “Debugger Console” window, or simply the GDB
console. This window displays your interaction with the debugger and with your program. It is
used to input commands to the debugger at the GDB prompt “(gdb)”. Remember, DDD is a
graphical interface to the GDB debugger.

Finally, at the very bottom of the DDD window, is the “Status Line”. It displays helpful
messages on what DDD is doing, as well as useful information when you move the mouse
around.

Pull-down
Menu

Toolbar
Argument
Field

Scroll Bar

Source
Window

Command
Tool

Debugger
Console

 Status Line
You can run the program in the debugger in one of two ways. You can click on the “Run”
button in the “Command Tool”, or you can use the “Program” pull-down menu and select the
“Run” option. The latter choice allows you to also provide run-time arguments to your
program, but this is not needed in our case.
Click the “Run” button in the “Command Tool”. The program will start to execute and then
stops with a “Segmentation fault” as shown in the screenshot below. The arrow indicates where
the error occurred, at line 40: p->next->next = p. This is certainly much better than
spending hours staring at your code, or trying to guess where the error occurred by inserting
print statements all over the code!

ECE 244 Lab 1 Page 11 of 23

Now, you must find out what caused the “Segmentation fault”. You can do so by examining the
values on both the left and right hand sides of the assignment at line 40. You can find out the
value a variable has when the program is stopped in one of two ways (there are actually more,
but let’s stick with the most common two). The first is to use value hints. Highlight the name of
a variable and move the mouse cursor over the highlighted text and leave there for a moment. A
small window will appear that shows the type and value of the variable. The status line also
shows the value of the variable.

Highlight p on the right hand side of the assignment to find out its value. The result is shown in
the screenshot below.

The second way to find the value of a variable is to use the print value command to print the
value of the variable to the GDB console. You can do this by copying the name of the variable
to the “Argument field” box and then clicking on the “Print” icon on the toolbar. You can also
do this by highlighting the variable and clicking the right button of the mouse for a popup
menu. Select the Print option. Try both. A screenshot of the popup menu is shown below.

ECE 244 Lab 1 Page 12 of 23

Back to the “Segmentation fault”. Find the value of the left hand side of the assignment at line
40: p->next->next. DDD indicates that it is not possible to access memory at this address,
as shown in the screenshot below. This is the source of the error (the word “segment” refers to
an area in memory and a program accessing memory where it should not or cannot causes a
“segment”-ation fault).

Find the value of the variable p->next on the same line. DDD indicates that it is 0x0 (i.e.
NULL), as shown in the screenshot below. This is what is causing the problem. The program is
de-referencing a NULL pointer! The code is simple enough, and you know that
p->next->next should really be head->next->next.

Fix the problem by exiting the debugger and editing the file to make the correction (later you
will learn how to do this while the debugger is running and/or from within the debugger).
Recompile the program. It should now run correctly.

ECE 244 Lab 1 Page 13 of 23

7.2 Part II – Breakpoints

It is also often the case that a program runs to completion but does not behave as it should. The
debugger becomes handy in trying to figure out what is wrong with the program. This is
usually done by controlling the execution of the program, inspecting the values of the variables,
and comparing these values with what they are expected to be. A variable that takes a value it
should not, according to how a program is expected to work, is often the first clue to
determining what is wrong with the program.

Use your browser to download the program bubble.cc from the “Labs” section of the
course’s web site. The program prompts for 5 integers, stores them in an array, and then sorts
the array using a bubble sort function. Look at the program and study it.

Compile this program using the g++ compiler as follows:

 g++ bubble.cc –g –o bubble

Again, the –g option tells the compiler to compile the program for debugging. The –o option
tells the compiler to place the executable in the file called bubble. Thus, the program is
executed by typing:

 ./bubble

The program runs to completion, but it does not sort properly. For example the input 10 5 3
98 67 produces the output 10 3 5 67 98. While the last four elements are sorted, the
value 10 is out of place!

Start the debugger by typing:

ddd bubble

Run the program by clicking on the “Run” button in the “Command Tool”. The GDB console
shows the output of the program, prompting the user for the 5 integers, as shown in the
screenshot below. Enter 10 5 3 98 67 followed by return. The console window shows
the incorrect output of the program. Note that you may have to click the mouse in the console
window to interact with GDB.

ECE 244 Lab 1 Page 14 of 23

To determine what the problem is, start by inserting a breakpoint in the program. A breakpoint
is used to stop the execution of the program at a point of your choice. You can then inspect the
values variables have at this point. There are several types of breakpoints. In this lab we will
focus on the most common one, a statement breakpoint, which allows you to stop execution at a
given source statement (i.e., line).

The purpose of the use of the first breakpoint is to confirm that the array data does indeed
contain what you expect it to contain.

Scroll the “Source Window” to get the main function of the program in view. Left-click the
mouse at line 39: bubbleSort(5, data). You should see the line number displayed in the
“Argument field”. Click on the icon with the red “STOP” sign and the work “Break” in the
toolbar. This inserts a breakpoint before the call to bubbleSort. You can clearly see that a
breakpoint has been inserted from the red “STOP” sign at line 39. You can also see this from
the console window, which indicates that a breakpoint, numbered 1, has been inserted in file
bubble.cc at line 39 (0x8048794 is the address of breakpoint, which you may ignore).
The screenshot below shows the DDD window after you take the above actions.

Now, you can run the program and re-input the same data. The program does not terminate,
rather, it stops executing at line 39. This is before the function bubbleSort is called, and is
indicated by the green arrow at the line to the left of the breakpoint sign. It is also indicated in
the console window from the line Breakpoint 1, main () at bubble.cc:39. The
line says that execution reached breakpoint 1, which is in the function main in the file
bubble.cc. With the program stopped, you may examine the values in the array data as
shown in the screenshot below. The displayed values confirm that bubbleSort is passed
correct input.

ECE 244 Lab 1 Page 15 of 23

You may remove the breakpoint by right-clicking on the red “STOP” sign and choosing
“Delete Breakpoint”. For now, just leave it in. Scroll the “Source Window” to bring
bubbleSort into view and insert another breakpoint before the first for loop. The purpose
of this breakpoint is to stop execution before any of the function’s code begins to execute and
confirm that the array values are correct inside the function.

Continue the execution of the program by clicking the “Cont” button in the “Command Tool”.
This button continues the execution of the program from the first breakpoint to the next.
Alternatively you may single-step execution one statement at a time by pressing the “Step”
button until the breakpoint is reached. The program stops execution and stops before the for
loop. You may then examine the values in dataArray, as shown in the screen shot below.

In this case, the value hint indicates that dataArray is a pointer to an integer and gives its
value. The reason is that arrays are passed to functions as pointers (more on this will be covered
in the lectures). To display the array, you must use the “print” command from the GDB console
using the print command as follows:

print dataArray[0]@5.

ECE 244 Lab 1 Page 16 of 23

This tells the debugger to treat dataArray as an array, not a pointer, and to print 5 values
starting from index 0. The output of the debugger is shown in the screenshot below and
confirms that the values of the array elements are correct inside the function.

Next, insert a break point before the if statement on line 19. This will allow you to stop
execution on every iteration of the nested loops, and examine the values of the elements of the
array, in hope of finding out the source of the bug. Continue the execution of the program.
Execution will stop in the first iteration, which is supposed to compare the first and second
elements of the array to determine which is bigger, and move the bigger element if necessary.
Inspect the value of j and look at the array elements at indices j-1 and j. The value of j is 2.
Thus the program is comparing elements 1 and 2 in the first iteration. Since C++ arrays start at
0, these are the second and third elements, not the first and second. You have the cause of the
bug! The j-loop is written assuming the array starts at index 1 and ends at index n, while C++
arrays start at index 0 and end at index n-1! Thus, the loop should be shifted by 1.

Exit the debugger and edit the program to change the line for (int j = 2; j <= i;
++j) to for (int j = 1; j < i; ++j), which should iterate correctly over the
elements of the array. Re-compile the program. It should now run correctly.

ECE 244 Lab 1 Page 17 of 23

7.3 Part III – The Data Window

In this part of the assignment, you will learn one of the most powerful features of DDD, that is,
its graphical display. This feature allows you to display the names and values of variables in a
“Data Window,” which is updated each time your program’s execution stops. The feature is
particularly useful in debugging programs with large and complex data structures. In this part,
you will also learn about how to update your program while the debugger is running.

Use a browser to download the C++ program called list2.cc from the “Labs” section of the
course web site. The program creates three nodes and links them in a linked list, and then it
creates a fourth node and inserts it between the second and third nodes in the list. The program
is very similar to the one you looked at in Part I above. Look at the program and study it. It
should print the “id’s” of the nodes as: 1 2 4 3.

Compile this program as follows:

 g++ list2.cc –g –o list2

Again, the –g option tells the compiler to compile the program for debugging and the –o
option tells the compiler to place the executable in the file called list2. The program may be
executed by typing:

 ./list2

The program enters into an infinite loop, and you will see “4’s” printed all over the screen.
Terminate the program by repeatedly typing “^C” (press and hold the control key while
repeatedly hitting the C key). The program will eventually terminate.

Start the debugger by typing:

ddd list2 &

The & at the end of the command line runs DDD in the “background,” allowing you to type
commands into your xterm window while the debugger is running.

There is only one “while” loop in the program, and thus, it must be the source of the infinite
loop. Insert a breakpoint before this loop, as shown below.

ECE 244 Lab 1 Page 18 of 23

Now run the program by clicking on the “Run” button in the “Command Tool”. The GDB
console shows that the program is stopped at the breakpoint as shown below.

Let’s examine the linked list we created. Highlight any occurrence of the variable head in the
code, then press and hold the right mouse button to get the popup menu. Select Display
head, as shown below.

This causes the “Data Window” to appear and the name and value of head are shown in the
window, as shown below.

Data
Window

Now we can graphically display the linked list. In the “Data window,” press and hold the right
mouse button to get the popup menu. Select Display *() to deference the pointer and
display the data it is pointing to, as shown below.

The “Data Window” now shows the first node in the linked list. The display shows the values
of id and next variables in the first node.

ECE 244 Lab 1 Page 19 of 23

Now highlight the next field of the first node, and using the right button of the mouse, select
Display *() to deference next and display the second node in the list. It has an id of 2 as
expected.

Now repeat this twice to get the third and fourth nodes in the list as shown below.

The problem is now clear. The successor to node 2 is node 4 as expected. However, the
successor to node 4 is also node 4 (same id and next values). Thus, the while loop after
getting to node 4 goes into an infinite loop.

The cause of the problem must be in how node 4 was inserted on the list. A quick examination
shows that the two lines:

 p2->next = p;
 p->next = p2->next;

are in the wrong order. They should be:

 p->next = p2->next;
 p2->next = p;

In your xterm window, edit the program and switch the two lines. Re-compile the program
using the same command line as above. Then, in your DDD window, click the “Run” button
again. Note the GDB console and observe that the debugger has recognized that the program has
now changed, and runs the new version.

Also, observe how the debugger re-displays the list in the “Data Window” as the program
executes. The successor of node 4 is now node 3, as expected, and the program is working
correctly. Click the “Cont” button in the “Command Tool,” and verify that the program
terminates correctly.

ECE 244 Lab 1 Page 20 of 23

7.4 Part IV – On Your Own

Use a browser to download the C++ program called harmonic.cc from the “Labs” section
of the course web site. The program prompts the user for an integer n and then computes the
nth harmonic number, defined as 1/n + 1/(n-1) + (1/n-2) + … + 1/2 + 1/1. However, the
program prints “inf” (i.e., infinity) for any input.

Use DDD to debug and fix the program. Even if you think you have spotted the error without
the debugger, try to use the debugger to confirm your suspicions.

7.5 Part V – On Your Own

In this part of the assignment, use your browser to download the program convert.cc from
the “Labs” section of the course’s web site. This program converts a temperature from one
temperature scale to another. Read through the program to become familiar with its
functionality. The program contains a number of compile-time and run-time errors that you
must find and correct using the DDD debugger. The following shows the “correct” output of the
program for a number of inputs, and should serve as a specification for the program.

Please enter the temperature you wish to convert,
 followed by its scale (eg. 23 C): 45 F

45 F is equivalent to:
 45 F, 7.22222 C, and 280.222 K

Please enter the temperature you wish to convert,
 followed by its scale (eg. 23 C): -400 c

-400 C is equivalent to:
 -688 F, -400 C, and -127 K

Please enter the temperature you wish to convert,
 followed by its scale (eg. 23 C): 100 k

100 k is equivalent to:
 -279.4 F, -173 C, and 100 K

Make sure that you do not change the way in which input is read and/or the way in which the
output is printed.

ECE 244 Lab 1 Page 21 of 23

ECE 244 Lab 1 Page 22 of 23

Create an executable called convert from the convert.cc file and test it using the following
commands:

 % g++ convert.cc -o convert
 % ~stumm/public/ece244/exercise 1 ./convert

Call the exercise multiple times to have it tested with different test cases.

7 Submitting the Programs

Once you are confident that your code is working correctly, it’s time to submit it. This is done
with the submitece244f command. It has the following syntax:

submitece244f assignment# filename [filename]

You can submit multiple files at the same time simply by listing them on the command line.
The command should complete without printing anything. If it does then you have successfully
submitted the specified files:

% pwd
.../assign1
% submitece244f 1 Hello.cpp convert.cc

WARNING: If your submission is incorrect, you will need to resubmit all your files. The
command submitece244f may output an error message in certain cases. However,
submitece244f does NOT generate a warning message if you try to submit nonexistent files.
Instead, it silently submits empty files under the name of each missing file. Even if you've
already submitted some files and then try to resubmit from a wrong directory, the existing
submission will be silently overwritten by empty files. This is an extremely dangerous
“feature”, and for this reason the submitece244f command should never be used except
immediately following a successful run of chksubmit. The use of chksubmit is described
below.

Another common problem with electronic submission is subtler. If you run the submit
command correctly but forget to include a necessary file, you will not receive any error
messages. The automarker will not be able to compile and run your program, however, so it
will fail every test case.

To prevent these kinds of problems we have provided a program called chksubmit. It has the
exact same syntax as submitece244f:

~stumm/public/ece244/chksubmit assignment# filename [filename]

However, it does not actually submit any files. Rather, it tries to compile your program given
the files specified on the command line. If the compilation fails, or if it does not produce all
the expected executables, then chksubmit will print an error message. For example, say you
forget to include Hello.cpp when submitting your files, but rather include hello.cpp
(lower case “h”):

ECE 244 Lab 1 Page 23 of 23

% ~stumm/public/ece244/chksubmit 1 hello.cpp convert.cc

Attempting to build your code. Make output follows:

==
make: *** No rule to make target `Hello.cpp', needed by `Hello'.
Stop.
--
The build appears to have failed. See the make output for more
information about the details of the error.
--

chksubmit tells you that there was a problem compiling your program, and gives you some
hints as to where the problem occurred (you will understand this more once you have been fully
introduced to the make utility). If, on the other hand, you include the correct file then the
output will look like this:

% ~stumm/public/ece244/chksubmit 1 Hello.cpp convert.cc
Attempting to build your code. Make output follows:
==
g++ Hello.cpp -o Hello
--
The build appears to have been successful...

All expected executables were found. Now run the submit command
as follows:

submitece244f 1 Hello.cpp convert.cc
==

chksubmit tells you that everything worked as expected, and it provides the exact command
line that you should use to run the submit command. You should copy and paste that command
line to ensure that you run it exactly as shown. Once you have done so you can be confident
that you have successfully submitted your code.

8 Deliverables

Submit the Hello.cpp and convert.cc files by using the command:

submitece244f 1 Hello.cpp convert.cc

Please use the exercise and chksubmit commands to make sure that everything works as
expected. Also, you can use the command

 submitece244f -l 1

to be shown a list of the files that you've submitted.

